Methyl vinyl ketone
- Formula: C4H6O
- Molecular weight: 70.0898
- IUPAC Standard InChIKey: FUSUHKVFWTUUBE-UHFFFAOYSA-N
- CAS Registry Number: 78-94-4
- Chemical structure:
This structure is also available as a 2d Mol file - Other names: 3-Buten-2-one; Vinyl methyl ketone; 1-Buten-3-one; 2-Butenone; 3-Butene-2-one; CH2=CHCOCH3; Acetone, methylene-; Butenone; Ketone, methyl vinyl; Methyl ethenyl ketone; Methyl-vinyl-cetone; Methylvinylketon; Acetyl ethylene; Methylene acetone; γ-Oxo-α-butylene; UN 1251; 3-Oxobutene; 3-Butenen-2-one; But-3-en-2-one; 3-Oxo-1-butene; NSC 4853
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -27.4 ± 2.6 | kcal/mol | Eqk | Guthrie, 1978 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 76.563 | cal/mol*K | N/A | Kharitonov Yu.Ya., 1987 | This value was calculated by statistical mechanical method. Statistically calculated thermodynamic functions of [ Anjaneyulu Y., 1988] (S(300 K)=301.65 and Cp(300 K)=79.23 J/mol*K) seem to be erroneous. Values of S(298.15 K)=316.5 and Cp(298.15 K)=92.2 J/mol*K were calculated from data for related aldehydes and ketones by difference method [ Dorofeeva O.V., 1997].; GT |
References
Go To: Top, Gas phase thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Guthrie, 1978
Guthrie, J.P.,
Equilibrium constants for a series of simple aldol condensations, and linear free energy relations with other carbonyl addition reactions,
Can. J. Chem., 1978, 56, 962-973. [all data]
Kharitonov Yu.Ya., 1987
Kharitonov Yu.Ya.,
Thermodynamic properties of methylvinylketone calculated by statistical mechanics. Deposited at ONIITEkhim, Cherkassy, Ukraine, 16.04.87, No. 417-xn 87 (From Ref. Zh. Khim. 1987, 15 B3025DP), 1987. [all data]
Anjaneyulu Y., 1988
Anjaneyulu Y.,
Thermodynamic functions of some acryl derivatives,
J. Indian Chem. Soc., 1988, 65, 400-403. [all data]
Dorofeeva O.V., 1997
Dorofeeva O.V.,
Unpublished results. Thermocenter of Russian Academy of Science, Moscow, 1997. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, References
- Symbols used in this document:
S°gas Entropy of gas at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.