Water
- Formula: H2O
- Molecular weight: 18.0153
- IUPAC Standard InChIKey: XLYOFNOQVPJJNP-UHFFFAOYSA-N
- CAS Registry Number: 7732-18-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
View 3d structure (requires JavaScript / HTML 5) - Isotopologues:
- Other names: Water vapor; Distilled water; Ice; H2O; Dihydrogen oxide; steam; Tritiotope
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Gas phase thermochemistry data
- Condensed phase thermochemistry data
- Phase change data
- Reaction thermochemistry data: reactions 1 to 50, reactions 51 to 100, reactions 101 to 150, reactions 151 to 200, reactions 201 to 250, reactions 251 to 300, reactions 301 to 350, reactions 351 to 400, reactions 401 to 450, reactions 451 to 500, reactions 501 to 550, reactions 551 to 600, reactions 601 to 650, reactions 651 to 700, reactions 701 to 750, reactions 751 to 800, reactions 801 to 850, reactions 851 to 900, reactions 901 to 950, reactions 951 to 1000, reactions 1051 to 1100, reactions 1101 to 1150, reactions 1151 to 1200, reactions 1201 to 1250, reactions 1251 to 1300, reactions 1301 to 1350, reactions 1351 to 1360
- Gas phase ion energetics data
- Ion clustering data
- IR Spectrum
- Mass spectrum (electron ionization)
- Vibrational and/or electronic energy levels
- Gas Chromatography
- Fluid Properties
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Reaction thermochemistry data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
MS - José A. Martinho Simões
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 1001 to 1050
C2Na2 (cr) + 2 (l) = 2(
• 1418
) (solution) +
(g)
By formula: C2Na2 (cr) + 2H2O (l) = 2(HNaO • 1418H2O) (solution) + C2H2 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -161.8 ± 1.5 | kJ/mol | RSC | Johnson, van Deventer, et al., 1973 | Please also see Pedley and Rylance, 1977.; MS |
C14H10F6MoO4 (cr) + 2( • 4.40
) (solution) = C10H10Cl2Mo (cr) + 2
(l)
By formula: C14H10F6MoO4 (cr) + 2(HCl • 4.40H2O) (solution) = C10H10Cl2Mo (cr) + 2C2HF3O2 (l)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 58.2 ± 2.5 | kJ/mol | RSC | Calado, Dias, et al., 1981 | Please also see Calhorda, Carrondo, et al., 1986.; MS |
Butanedioic acid, ion(2-) + = C4H6O5-2
By formula: Butanedioic acid, ion(2-) + H2O = C4H6O5-2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 34. ± 18. | kJ/mol | N/A | Ding, Wang, et al., 1998 | gas phase; Affinity is EA difference from next lower solvated ion.; B |
By formula: H2O + C3H5ClO2 = CH4O + C2H3ClO2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -57.3 ± 2.9 | kJ/mol | Eqk | Guthrie and Cullimore, 1980 | liquid phase; Using Hf(s,ClCH2COOH)=-122.0±2.0 kcal/mol; ALS |
C2HCs (cr) + (l) = (
• 1031
) (solution) +
(g)
By formula: C2HCs (cr) + H2O (l) = (HCsO • 1031H2O) (solution) + C2H2 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -54.0 ± 0.8 | kJ/mol | RSC | Ader and Hubbard, 1973 | Please also see Pedley and Rylance, 1977.; MS |
C14H10F6O4Ti (cr) + 2( • 4.40
) (solution) =
(cr) + 2
(l)
By formula: C14H10F6O4Ti (cr) + 2(HCl • 4.40H2O) (solution) = C10H10Cl2Ti (cr) + 2C2HF3O2 (l)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 37.8 ± 2.3 | kJ/mol | RSC | Calado, Dias, et al., 1981 | Please also see Calhorda, Carrondo, et al., 1986.; MS |
C14H10F6O4W (cr) + 2( • 4.40
) (solution) = C10H10Cl2W (cr) + 2
(l)
By formula: C14H10F6O4W (cr) + 2(HCl • 4.40H2O) (solution) = C10H10Cl2W (cr) + 2C2HF3O2 (l)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31.9 ± 1.9 | kJ/mol | RSC | Calado, Dias, et al., 1981 | Please also see Calhorda, Carrondo, et al., 1986.; MS |
C2HNa (cr) + (l) = (
• 1418
) (solution) +
(g)
By formula: C2HNa (cr) + H2O (l) = (HNaO • 1418H2O) (solution) + C2H2 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -54.2 ± 0.8 | kJ/mol | RSC | Johnson, van Deventer, et al., 1973 | Please also see Pedley and Rylance, 1977.; MS |
By formula: C6H14O = C6H12 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 33.8 ± 0.3 | kJ/mol | Cm | Wiberg, Wasserman, et al., 1984 | liquid phase; Heat of hydration, see Wiberg and Wasserman, 1981; ALS |
By formula: C6H14O = C6H12 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32.1 ± 0.3 | kJ/mol | Cm | Wiberg, Wasserman, et al., 1984 | liquid phase; Heat of hydration, see Wiberg and Wasserman, 1981; ALS |
By formula: (Cs+ • H2O • O2S) + H2O = (Cs+ • 2H2O • O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 22. | kJ/mol | HPMS | Banic and Iribarne, 1985 | gas phase; electeric fields; M |
By formula: Al+ + H2O = (Al+ • H2O)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
104. (+15.,-0.) | CID | Dalleska, Tjelta, et al., 1994 | gas phase; guided ion beam CID, Al+ (3s2); M |
By formula: (Fe+ • 2H2O) + H2O = (Fe+ • 3H2O)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
76.1 (+4.2,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Fe+ • 3H2O) + H2O = (Fe+ • 4H2O)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
82.0 (+7.1,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Cr+ • 3H2O) + H2O = (Cr+ • 4H2O)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
51.0 (+7.1,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Ti+ • 2H2O) + H2O = (Ti+ • 3H2O)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
66.9 (+7.1,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Ti+ • 3H2O) + H2O = (Ti+ • 4H2O)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
83.7 (+7.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Mn+ • 2H2O) + H2O = (Mn+ • 3H2O)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
108. (+5.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Mn+ • 3H2O) + H2O = (Mn+ • 4H2O)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
50.2 (+5.0,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (V+ • 3H2O) + H2O = (V+ • 4H2O)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
67.8 (+7.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Ni+ • 2H2O) + H2O = (Ni+ • 3H2O)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
68.2 (+5.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Ni+ • 3H2O) + H2O = (Ni+ • 4H2O)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
51.9 (+5.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Co+ • 2H2O) + H2O = (Co+ • 3H2O)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
64.9 (+5.0,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Co+ • 3H2O) + H2O = (Co+ • 4H2O)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
58.2 (+5.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (H3O+ • 3H2O) + O2S = (H3O+ • O2S • 3H2O)
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
18. | 300. | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
By formula: (Cr+ • 2H2O) + H2O = (Cr+ • 3H2O)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
50. (+50.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Ti+ • H2O) + H2O = (Ti+ • 2H2O)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
136. (+5.0,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (H4N+ • 2H2O) + O2S = (H4N+ • O2S • 2H2O)
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
21. | 300. | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
By formula: (H4N+ • 3H2O) + O2S = (H4N+ • O2S • 3H2O)
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
15. | 300. | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
By formula: (Cs+ • 2H2O) + O2S = (Cs+ • O2S • 2H2O)
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
15. | 300. | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
By formula: 2H2O + C10H2O6 = C10H6O8
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -71.5 ± 0.57 | kJ/mol | Cm | Alekseev, Kizaev, et al., 1989 | solid phase; solvent: Aqueous; Enthapy of anhydridisation; ALS |
By formula: (I- • O2S • H2O) + O2S = (I- • 2O2S • H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 29.7 ± 0.42 | kJ/mol | TDAs | Banic and Iribarne, 1985 | gas phase; B |
By formula: C8H6O4 = H2O + C8H4O3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31.93 ± 0.29 | kJ/mol | Cm | Alekseev, Kizaev, et al., 1989 | solid phase; solvent: Aqueous; Enthapy of anhydridisation; ALS |
3 +
= CNa2O3 +
+
+
By formula: 3HNaO + C3H5ClO2 = CNa2O3 + C2H6O + ClNa + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -323.3 ± 1.7 | kJ/mol | Cm | Davies, Finch, et al., 1980 | liquid phase; Heat of hydrolysis; ALS |
By formula: (H4N+ • H2O) + O2S = (H4N+ • O2S • H2O)
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
27. | 300. | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
By formula: (Cs+ • H2O) + O2S = (Cs+ • O2S • H2O)
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
18. | 300. | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
By formula: C5H6N2O + H2O = C3H4N2 + C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -20.2 ± 0.2 | kJ/mol | Cm | Wadso, 1960 | liquid phase; solvent: Aqueous; Heat of hydrolysis; ALS |
C9H27NSn3 (cr) + ( • 55
) (solution) + 3
(l) = (
• 55
) (solution) + 3C3H10OSn (cr)
By formula: C9H27NSn3 (cr) + (HCl • 55H2O) (solution) + 3H2O (l) = (H4ClN • 55H2O) (solution) + 3C3H10OSn (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -293.7 ± 1.3 | kJ/mol | RSC | Baldwin, Lappert, et al., 1972 | MS |
H12O12P2-2 + 6 = H14O13P2-2
By formula: H12O12P2-2 + 6H2O = H14O13P2-2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 24.7 ± 0.84 | kJ/mol | IMRE | Blades, Ho, et al., 1996 | gas phase; Correction to published article: P. Kebarle; B |
C10H19N5O13P2-2 + 4 = C10H21N5O14P2-2
By formula: C10H19N5O13P2-2 + 4H2O = C10H21N5O14P2-2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 25.5 ± 0.84 | kJ/mol | IMRE | Blades, Ho, et al., 1996 | gas phase; Correction to published article: P. Kebarle; B |
C10H27N5O17P2-2 + 8 = C10H29N5O18P2-2
By formula: C10H27N5O17P2-2 + 8H2O = C10H29N5O18P2-2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 18.4 ± 0.84 | kJ/mol | IMRE | Blades, Ho, et al., 1996 | gas phase; Correction to published article: P. Kebarle; B |
By formula: (Cs+ • H2O) + CO2 = (Cs+ • CO2 • H2O)
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
5.0 | 301. | HPMS | Banic and Iribarne, 1985 | gas phase; electric fields; M |
By formula: C9H16N2O2 + H2O = C4H8O2 + C3H4N2 + C2H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -44.69 ± 0.67 | kJ/mol | Cm | Guthrie and Pike, 1987 | liquid phase; Heat of hydrolysis; ALS |
By formula: C4H10O2 + 2C2H4O2 = C8H14O4 + 2H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22.30 | kJ/mol | Eqk | Shlechter, Othmer, et al., 1945 | liquid phase; Heat of esterification at 338-453 K; ALS |
By formula: C6H12O3 + C2H4O2 = C8H14O4 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1.85 | kJ/mol | Eqk | Shlechter, Othmer, et al., 1945 | liquid phase; Heat of esterification at 338-453 K; ALS |
2 +
=
+
+ CNO.Na
By formula: 2HNaO + CBrN = BrNa + H2O + CNO.Na
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -234.6 ± 0.71 | kJ/mol | Cm | Lord and Woolf, 1954 | solid phase; Heat of hydrolysis; ALS |
2 +
=
+
+ CNO.Na
By formula: 2HNaO + CIN = INa + H2O + CNO.Na
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -193.9 ± 0.3 | kJ/mol | Cm | Lord and Woolf, 1954 | solid phase; Heat of hydrolysis; ALS |
By formula: C12H14N2O2 + H2O = C3H4N2 + CH4O + C8H8O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -55.48 ± 0.71 | kJ/mol | Cm | Guthrie and Pike, 1987 | liquid phase; Heat of hydrolysis; ALS |
2 +
=
+
+ CNO.Na
By formula: 2HNaO + CClN = ClNa + H2O + CNO.Na
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -277.5 ± 0.4 | kJ/mol | Cm | Lord and Woolf, 1954 | solid phase; Heat of Hydrolysis; ALS |
References
Go To: Top, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Johnson, van Deventer, et al., 1973
Johnson, G.K.; van Deventer, E.H.; Ackerman, J.P.; Hubbard, W.N.; Osborne, D.W.; Flotow, H.L.,
J. Chem. Thermodyn., 1973, 5, 57. [all data]
Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J.,
Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]
Calado, Dias, et al., 1981
Calado, J.C.G.; Dias, A.R.; Salema, M.S.; Martinho Simões, J.A.,
J. Chem. Soc., Dalton Trans., 1981, 1174.. [all data]
Calhorda, Carrondo, et al., 1986
Calhorda, M.J.; Carrondo, M.A.A.F.C.T.; Dias, A.R.; Domingos, A.M.T.S.; Martinho Simões, J.A.; Teixeira, C.,
Organometallics, 1986, 5, 660. [all data]
Ding, Wang, et al., 1998
Ding, C.F.; Wang, X.B.; Wang, L.S.,
Photoelectron spectroscopy of doubly charged anions: Intramolecular Coulomb repulsion and solvent stabilization,
J. Phys. Chem. A, 1998, 102, 45, 8633-8636, https://doi.org/10.1021/jp982698x
. [all data]
Guthrie and Cullimore, 1980
Guthrie, J.P.; Cullimore, P.A.,
Effect of the acyl substituent on the equilibrium constant for hydration of esters,
Can. J. Chem., 1980, 58, 1281-1294. [all data]
Ader and Hubbard, 1973
Ader, M.; Hubbard, W.N.,
J. Chem. Thermodyn., 1973, 5, 607. [all data]
Wiberg, Wasserman, et al., 1984
Wiberg, K.B.; Wasserman, D.J.; Martin, E.,
Enthalpies of hydration of alkenes. 2. The n-heptenes and n-pentenes,
J. Phys. Chem., 1984, 88, 3684-3688. [all data]
Wiberg and Wasserman, 1981
Wiberg, K.B.; Wasserman, D.J.,
Enthalpies of hydration of alkenes. 1. The n-hexenes,
J. Am. Chem. Soc., 1981, 103, 6563-6566. [all data]
Banic and Iribarne, 1985
Banic, C.M.; Iribarne, J.V.,
Equilibrium Constants for Clustering of Neutral Molecules about Gaseous Ions,
J. Chem. Phys., 1985, 83, 12, 6432, https://doi.org/10.1063/1.449543
. [all data]
Dalleska, Tjelta, et al., 1994
Dalleska, N.F.; Tjelta, B.L.; Armentrout, P.B.,
Sequential Bond Energies of Water to Na+ (3s0), Mg+ (3s1), and Al+ (3s2),
J. Phys. Chem., 1994, 98, 15, 4191, https://doi.org/10.1021/j100066a045
. [all data]
Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L.,
Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]
Alekseev, Kizaev, et al., 1989
Alekseev, V.G.; Kizaev, V.D.; Fedyainov, N.V.; Bushinskii, V.I.,
Standard enthalpies of anhydridisation of phthalic and pyromellitic acids,
Russ. J. Phys. Chem. (Engl. Transl.), 1989, 63, 1280-1282. [all data]
Davies, Finch, et al., 1980
Davies, R.H.; Finch, A.; Gardner, P.J.,
The standard enthalpy of formation of liquid and gaseous ethylchloroformate (C3H5O2Cl),
J. Chem. Thermodyn., 1980, 12, 291-296. [all data]
Wadso, 1960
Wadso, I.,
Heats of hydrolysis of N-acetylated imidazole, 1,2,4-triazole and tetrazole,
Acta Chem. Scand., 1960, 14, 903-908. [all data]
Baldwin, Lappert, et al., 1972
Baldwin, J.C.; Lappert, M.F.; Pedley, J.B.; Poland, J.S.,
J. Chem. Soc., Dalton Trans., 1972, 1943.. [all data]
Blades, Ho, et al., 1996
Blades, A.T.; Ho, Y.; Kebarle, P.,
Free Energies of Hydration in the Gas Phase of Some Phosphate Singly and Doubly Charged Anions: orthophosphate, diphosphate, Ribose-5-phosphate, Adenosine-5'-phosphate and Adenosine-5'-Dipho,
J. Phys. Chem., 1996, 100, 6, 2443, https://doi.org/10.1021/jp952032s
. [all data]
Guthrie and Pike, 1987
Guthrie, J.P.; Pike, D.C.,
Hydration of acylimidazoles: tetrahedral intermediates in acylimidazole hydrolysis and nucleophilic attack by imidazole on esters. The question of concerted mechanisms for acyl transfers,
Can. J. Chem., 1987, 65, 1951-1969. [all data]
Shlechter, Othmer, et al., 1945
Shlechter, N.; Othmer, D.F.; Marshak, S.,
Esterification of 2,3-butylene glycol with acetic acid,
Ind. Eng. Chem., 1945, 37, 900-905. [all data]
Lord and Woolf, 1954
Lord, G.; Woolf, A.A.,
The cyanogen halides. Part III. Their heats of formation and free energies,
J. Chem. Soc., 1954, 2546-2551. [all data]
Notes
Go To: Top, Reaction thermochemistry data, References
- Symbols used in this document:
T Temperature ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.