1,3-Diazine

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
MS - José A. Martinho Simões
B - John E. Bartmess
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C10H5CrNO5 (solution) + Carbon monoxide (solution) = Chromium hexacarbonyl (solution) + 1,3-Diazine (solution)

By formula: C10H5CrNO5 (solution) + CO (solution) = C6CrO6 (solution) + C4H4N2 (solution)

Quantity Value Units Method Reference Comment
Δr-61.9kJ/molKinSWovkulich and Atwood, 1980solvent: Hexane; The data rely on the enthalpy and entropy of activation for the forward reaction, 106.3 ± 4.6 kJ/mol and 13.0±14.6 J/(mol K) Dennenberg and Darensbourg, 1972, and also on the enthalpy and entropy of activation for the Cr-CO dissociation in Cr(CO)6, 168.2 ± 2.5 kJ/mol and 94.6±6.3 J/(mol K) Graham and Angelici, 1967. The latter data were obtained in decalin; MS

Tungsten hexacarbonyl (cr) + 1,3-Diazine (l) = C10H5NO5W (cr) + Carbon monoxide (g)

By formula: C6O6W (cr) + C4H4N2 (l) = C10H5NO5W (cr) + CO (g)

Quantity Value Units Method Reference Comment
Δr34.6kJ/molN/ANakashima and Adamson, 1982The reaction enthalpy was calculated from the enthalpy of the reaction W(CO)6(solution) + py(solution) = W(CO)5(py)(solution) + CO(solution) in cyclohexane, 27.4 ± 2.9 kJ/mol, together with the enthalpies of solution of W(CO)6(cr), W(CO)5(py)(cr), and py(l), 35.7, 36.4, and 7.9 kJ/mol, respectively Nakashima and Adamson, 1982.; MS

C4H3N2- + Hydrogen cation = 1,3-Diazine

By formula: C4H3N2- + H+ = C4H4N2

Quantity Value Units Method Reference Comment
Δr1612. ± 10.kJ/molTDEqMeot-ner and Kafafi, 1988gas phase; Acid: pyrimidine. Anchored to 88MEO scale, not "87 acidity scale; B
Quantity Value Units Method Reference Comment
Δr1576.5 ± 2.9kJ/molN/AWren, Vogelhuber, et al., 2012gas phase; B
Δr1577. ± 8.4kJ/molTDEqMeot-ner and Kafafi, 1988gas phase; Acid: pyrimidine. Anchored to 88MEO scale, not "87 acidity scale; B

Tungsten hexacarbonyl (solution) + 1,3-Diazine (solution) = C10H5NO5W (solution) + Carbon monoxide (solution)

By formula: C6O6W (solution) + C4H4N2 (solution) = C10H5NO5W (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr27.4 ± 2.9kJ/molPCNakashima and Adamson, 1982solvent: Cyclohexane; MS
Δr24.9 ± 2.9kJ/molPCNakashima and Adamson, 1982solvent: Benzene; MS
Δr18.4 ± 0.4kJ/molPCNakashima and Adamson, 1982solvent: Tetrahydrofuran; MS

C39H68O3P2W (solution) + 1,3-Diazine (solution) = C44H71NO3P2W (solution) + Hydrogen (g)

By formula: C39H68O3P2W (solution) + C4H4N2 (solution) = C44H71NO3P2W (solution) + H2 (g)

Quantity Value Units Method Reference Comment
Δr-39.7 ± 2.1kJ/molRSCGonzalez, Zhang, et al., 1988solvent: Toluene; MS
Δr-41.8 ± 2.1kJ/molRSCGonzalez, Zhang, et al., 1988solvent: Tetrahydrofuran; MS

C14H10CrN2O4 (cr) = 21,3-Diazine (g) + 4Carbon monoxide (g) + chromium (cr)

By formula: C14H10CrN2O4 (cr) = 2C4H4N2 (g) + 4CO (g) + Cr (cr)

Quantity Value Units Method Reference Comment
Δr>199.kJ/molTD-HFCAdedeji, Connor, et al., 1978The reaction enthalpy is a low limit Adedeji, Connor, et al., 1978.; MS

C8H6MoO3 (solution) + 31,3-Diazine (solution) = C18H15MoN3O3 (solution) + 1,3-Cyclopentadiene (solution)

By formula: C8H6MoO3 (solution) + 3C4H4N2 (solution) = C18H15MoN3O3 (solution) + C5H6 (solution)

Quantity Value Units Method Reference Comment
Δr-69.9 ± 2.9kJ/molRSCNolan, Hoff, et al., 1985solvent: Pyridine; Reaction temperature: 323 K; MS

Nitric oxide anion + 1,3-Diazine = C4H4N3O-

By formula: NO- + C4H4N2 = C4H4N3O-

Quantity Value Units Method Reference Comment
Δr69.5 ± 9.6kJ/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

C9H9CrN3O3 (solution) + 31,3-Diazine (solution) = C18H15CrN3O3 (solution) + 3Acetonitrile (solution)

By formula: C9H9CrN3O3 (solution) + 3C4H4N2 (solution) = C18H15CrN3O3 (solution) + 3C2H3N (solution)

Quantity Value Units Method Reference Comment
Δr-48.1 ± 3.8kJ/molRSCMukerjee, Lang, et al., 1992solvent: Tetrahydrofuran; MS

C7H9Cl2NPd (solution) + 1,3-Diazine (l) = (PdCl2(C5H5N)2) (solution) + Ethylene (solution)

By formula: C7H9Cl2NPd (solution) + C4H4N2 (l) = (PdCl2(C5H5N)2) (solution) + C2H4 (solution)

Quantity Value Units Method Reference Comment
Δr-57.7 ± 1.7kJ/molRSCPartenheimer and Durham, 1974solvent: Dichloromethane; MS

C10H5NO5W (cr) + Carbon monoxide (g) = Tungsten hexacarbonyl (g) + 1,3-Diazine (g)

By formula: C10H5NO5W (cr) + CO (g) = C6O6W (g) + C4H4N2 (g)

Quantity Value Units Method Reference Comment
Δr83. ± 10.kJ/molDSCDaamen, van der Poel, et al., 1979Please also see Meester, Vriends, et al., 1976.; MS

C12H16CrO5 (solution) + 1,3-Diazine (solution) = Heptane (solution) + C10H5CrNO5 (solution)

By formula: C12H16CrO5 (solution) + C4H4N2 (solution) = C7H16 (solution) + C10H5CrNO5 (solution)

Quantity Value Units Method Reference Comment
Δr-84.1 ± 1.7kJ/molPACYang, Vaida, et al., 1988solvent: Heptane; MS

C39H66MoO3P3 (solution) + 1,3-Diazine (solution) = C44H71MoNO3P2 (solution)

By formula: C39H66MoO3P3 (solution) + C4H4N2 (solution) = C44H71MoNO3P2 (solution)

Quantity Value Units Method Reference Comment
Δr-70.7 ± 2.5kJ/molRSCZhang, Gonzalez, et al., 1991solvent: Toluene; MS

Molybdenum hexacarbonyl (cr) + 31,3-Diazine (g) = C18H15MoN3O3 (cr) + 3Carbon monoxide (g)

By formula: C6MoO6 (cr) + 3C4H4N2 (g) = C18H15MoN3O3 (cr) + 3CO (g)

Quantity Value Units Method Reference Comment
Δr-50.4 ± 7.0kJ/molHFCAdedeji, Connor, et al., 1978MS

Tungsten hexacarbonyl (cr) + 31,3-Diazine (g) = C18H15N3O3W (g) + 3Carbon monoxide (g)

By formula: C6O6W (cr) + 3C4H4N2 (g) = C18H15N3O3W (g) + 3CO (g)

Quantity Value Units Method Reference Comment
Δr-54.7 ± 8.4kJ/molHFCAdedeji, Connor, et al., 1978MS

C10H5CrNO5 (cr) + Carbon monoxide (g) = Chromium hexacarbonyl (g) + 1,3-Diazine (g)

By formula: C10H5CrNO5 (cr) + CO (g) = C6CrO6 (g) + C4H4N2 (g)

Quantity Value Units Method Reference Comment
Δr75. ± 6.kJ/molDSCDaamen, van der Poel, et al., 1979MS

C10H5MoNO5 (cr) + Carbon monoxide (g) = Molybdenum hexacarbonyl (g) + 1,3-Diazine (g)

By formula: C10H5MoNO5 (cr) + CO (g) = C6MoO6 (g) + C4H4N2 (g)

Quantity Value Units Method Reference Comment
Δr57. ± 3.kJ/molDSCDaamen, van der Poel, et al., 1979MS

Iron ion (1+) + 1,3-Diazine = (Iron ion (1+) • 1,3-Diazine)

By formula: Fe+ + C4H4N2 = (Fe+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr199. ± 7.9kJ/molCIDTAmunugama and Rodgers, 2001RCD

Chromium ion (1+) + 1,3-Diazine = (Chromium ion (1+) • 1,3-Diazine)

By formula: Cr+ + C4H4N2 = (Cr+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr177. ± 6.3kJ/molCIDTAmunugama and Rodgers, 2001RCD

Titanium ion (1+) + 1,3-Diazine = (Titanium ion (1+) • 1,3-Diazine)

By formula: Ti+ + C4H4N2 = (Ti+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr214. ± 10.kJ/molCIDTAmunugama and Rodgers, 2001RCD

Manganese ion (1+) + 1,3-Diazine = (Manganese ion (1+) • 1,3-Diazine)

By formula: Mn+ + C4H4N2 = (Mn+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr159. ± 9.6kJ/molCIDTAmunugama and Rodgers, 2001RCD

Scandium ion (1+) + 1,3-Diazine = (Scandium ion (1+) • 1,3-Diazine)

By formula: Sc+ + C4H4N2 = (Sc+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr214. ± 9.2kJ/molCIDTAmunugama and Rodgers, 2001RCD

Magnesium ion (1+) + 1,3-Diazine = (Magnesium ion (1+) • 1,3-Diazine)

By formula: Mg+ + C4H4N2 = (Mg+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr174. ± 5.9kJ/molCIDTAmunugama and Rodgers, 2001RCD

Vanadium ion (1+) + 1,3-Diazine = (Vanadium ion (1+) • 1,3-Diazine)

By formula: V+ + C4H4N2 = (V+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr204. ± 7.1kJ/molCIDTAmunugama and Rodgers, 2001RCD

Nickel ion (1+) + 1,3-Diazine = (Nickel ion (1+) • 1,3-Diazine)

By formula: Ni+ + C4H4N2 = (Ni+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr244. ± 9.6kJ/molCIDTAmunugama and Rodgers, 2001RCD

Aluminum ion (1+) + 1,3-Diazine = (Aluminum ion (1+) • 1,3-Diazine)

By formula: Al+ + C4H4N2 = (Al+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr159. ± 5.9kJ/molCIDTAmunugama and Rodgers, 2001RCD

Zinc ion (1+) + 1,3-Diazine = (Zinc ion (1+) • 1,3-Diazine)

By formula: Zn+ + C4H4N2 = (Zn+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr208. ± 7.5kJ/molCIDTAmunugama and Rodgers, 2001RCD

Cobalt ion (1+) + 1,3-Diazine = (Cobalt ion (1+) • 1,3-Diazine)

By formula: Co+ + C4H4N2 = (Co+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr245. ± 13.kJ/molCIDTAmunugama and Rodgers, 2001RCD

Copper ion (1+) + 1,3-Diazine = (Copper ion (1+) • 1,3-Diazine)

By formula: Cu+ + C4H4N2 = (Cu+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr249. ± 9.6kJ/molCIDTAmunugama and Rodgers, 2001RCD

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Wovkulich and Atwood, 1980
Wovkulich, M.J.; Atwood, J.D., J. Organometal. Chem., 1980, 184, 77. [all data]

Dennenberg and Darensbourg, 1972
Dennenberg, R.J.; Darensbourg, D.J., Inorg. Chem., 1972, 11, 72. [all data]

Graham and Angelici, 1967
Graham, J.R.; Angelici, R.J., Inorg. Chem., 1967, 6, 2082. [all data]

Nakashima and Adamson, 1982
Nakashima, M.; Adamson, A.W., J. Phys. Chem., 1982, 86, 2905. [all data]

Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A., Carbon Acidities of Aromatic Compounds, J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003 . [all data]

Wren, Vogelhuber, et al., 2012
Wren, S.W.; Vogelhuber, K.M.; Garver, J.M.; Kato, S.; Sheps, L.; Bierbaum, V.M.; Lineberger, W.C., C-H Bond Strengths and Acidities in Aromatic Systems: Effects of Nitrogen Incorporation in Mono-, Di-, and Triazines, J. Am. Chem. Soc., 2012, 134, 15, 6584-6595, https://doi.org/10.1021/ja209566q . [all data]

Gonzalez, Zhang, et al., 1988
Gonzalez, A.A.; Zhang, K.; Nolan, S.P.; Lopez de la Vega, R.; Mukerjee, S.L.; Hoff, C.D., Organometallics, 1988, 7, 2429. [all data]

Adedeji, Connor, et al., 1978
Adedeji, F.A.; Connor, J.A.; Demain, C.P.; Martinho Simões, J.A.; Skinner, H.A.; Zafarani- Moattar, M.T., J. Organometal. Chem., 1978, 149, 333. [all data]

Nolan, Hoff, et al., 1985
Nolan, S.P.; Hoff, C.D.; Landrum, J.T., J. Organometal. Chem., 1985, 282, 357. [all data]

Le Barbu, Schiedt, et al., 2002
Le Barbu, K.; Schiedt, J.; Weinkauf, R.; Schlag, E.W.; Nilles, J.M.; Xu, S.J.; Thomas, O.C.; Bowen, K.H., Microsolvation of small anions by aromatic molecules: An exploratory study, J. Chem. Phys., 2002, 116, 22, 9663-9671, https://doi.org/10.1063/1.1475750 . [all data]

Mukerjee, Lang, et al., 1992
Mukerjee, S.L.; Lang, R.F.; Ju, T.; Kiss, G.; Hoff, C.D.; Nolan, S.P., Inorg. Chem., 1992, 31, 4885. [all data]

Partenheimer and Durham, 1974
Partenheimer, W.; Durham, B., J. Am. Chem. Soc., 1974, 96, 3800. [all data]

Daamen, van der Poel, et al., 1979
Daamen, H.; van der Poel, H.; Stufkens, D.J.; Oskam, A., Thermochim. Acta, 1979, 34, 69. [all data]

Meester, Vriends, et al., 1976
Meester, M.A.M.; Vriends, R.C.J.; Stufkens, D.J.; Vrieze, K., Inorg. Chim. Acta, 1976, 19, 95. [all data]

Yang, Vaida, et al., 1988
Yang, G.K.; Vaida, V.; Peters, K.S., Polyhedron, 1988, 7, 1619. [all data]

Zhang, Gonzalez, et al., 1991
Zhang, K.; Gonzalez, A.A.; Murkerjee, S.L.; Chou, S.-J.; Hoff, C.D.; Kubat- Martin, K.A.; Barnhart, D.; Kubas, G.J., J. Am. Chem. Soc., 1991, 113, 9170. [all data]

Amunugama and Rodgers, 2001
Amunugama, R.; Rodgers, M.T., Periodic Trends in the Binding of Metal Ions to Pyrimidine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory, J. Phys. Chem. A, 2001, 105, 43, 9883, https://doi.org/10.1021/jp010663i . [all data]


Notes

Go To: Top, Reaction thermochemistry data, References