Hydrogen anion
- Formula: H-
- Molecular weight: 1.00849
- IUPAC Standard InChIKey: KLGZELKXQMTEMM-UHFFFAOYSA-N
- CAS Registry Number: 12184-88-2
- Chemical structure:
This structure is also available as a 2d Mol file - Isotopologues:
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Reaction thermochemistry data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1675.3 | kJ/mol | N/A | Shiell, Hu, et al., 2000 | gas phase; Given: 139714.8±1 cm-1 at 0K, or 399.465±0.003 kcal/mol; B |
ΔrH° | 1675.3 | kJ/mol | N/A | Pratt, McCormack, et al., 1992 | gas phase; 399.46±0.01 kcal/mol at 0K; 0.94 correction, Gurvich, Veyts, et al.; B |
ΔrH° | 1675.3 | kJ/mol | D-EA | Lykke, Murray, et al., 1991 | gas phase; Reported: 6082.99±0.15 cm-1, or 0.754195(18) eV; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1649.3 ± 0.42 | kJ/mol | H-TS | Shiell, Hu, et al., 2000 | gas phase; Given: 139714.8±1 cm-1 at 0K, or 399.465±0.003 kcal/mol; B |
ΔrG° | 1649.3 | kJ/mol | H-TS | Lykke, Murray, et al., 1991 | gas phase; Reported: 6082.99±0.15 cm-1, or 0.754195(18) eV; B |
By formula: H- + H3B = (H- • H3B)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 310. ± 12. | kJ/mol | Endo | Workman and Squires, 1988 | gas phase; From Endo threshold for hydride transfer to CO2; B |
ΔrH° | 322. ± 8.4 | kJ/mol | Ther | Krivtsov, Titova, et al., 1977 | gas phase; value altered from reference due to conversion from electron convention to ion convention; B |
ΔrH° | 341.4 | kJ/mol | Ther | Altschuller, 1955 | gas phase; B |
By formula: H- + H2O = (H- • H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 74.1 ± 8.4 | kJ/mol | N/A | Miller, Leopold, et al., 1985 | gas phase; EA given is Vertical Detachment Energy. Est. Adiabatic: 1.40 eV, 32.3 kcal/mol; B |
ΔrH° | 72. ± 15. | kJ/mol | Ther | Paulson and Henchman, 1984 | gas phase; HOH..HO- + H2 ->. See also Griffiths and Harris, 1989; B,M |
ΔrH° | 57.74 | kJ/mol | CIDT | Paulson and Henchman, 1982 | gas phase; B |
+ CAS Reg. No. 10177-98-7 = ( • CAS Reg. No. 10177-98-7)
By formula: H- + CAS Reg. No. 10177-98-7 = (H- • CAS Reg. No. 10177-98-7)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 84. ± 17. | kJ/mol | IMRB | Hajdasz, Ho, et al., 1994 | gas phase; affinity order: Et3SiH≤Et2SiH2≤nPnSiH3≤SiH4. nPnSiH3 is 0.4±0.2 kcal/mol > Et3SiH in ΔG. Et3SiH dHf(77PR) is wrong.; B |
ΔrH° | 45. ± 23. | kJ/mol | IMRB | Hajdasz and Squires, 1986 | gas phase; B |
By formula: H- + C6H16Si = (H- • C6H16Si)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 84. ± 17. | kJ/mol | IMRB | Hajdasz, Ho, et al., 1994 | gas phase; affinity order: Et3SiH≤Et2SiH2≤nPnSiH3≤SiH4. nPnSiH3 is 0.4±0.2 kcal/mol > Et3SiH in ΔG. Et3SiH dHf(77PR) is wrong.; B |
ΔrH° | 43. ± 23. | kJ/mol | IMRB | Hajdasz and Squires, 1986 | gas phase; B |
By formula: H- + H4Si = (H- • H4Si)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 79. ± 17. | kJ/mol | IMRB | Hajdasz, Ho, et al., 1994 | gas phase; B |
ΔrH° | 94. ± 19. | kJ/mol | IMRE | Hajdasz and Squires, 1986 | gas phase; QCISD Calculation: H-A = 20.2, 99MOC; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 49. ± 17. | kJ/mol | IMRB | Hajdasz, Ho, et al., 1994 | gas phase; B |
By formula: H- + C4H12Si = (H- • C4H12Si)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 84. ± 17. | kJ/mol | IMRB | Hajdasz, Ho, et al., 1994 | gas phase; Hydride affinity order: Et3SiH≤Et2SiH2≤nPnSiH3≤SiH4. dHf(Et2SiH2) in 77Ped/Ryl is 10 kcal/mol too negative, relative to Me2SiH2.Group Additivity imples ca. -25 kcal/mol.; B |
By formula: H- + H3N = (H- • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29.7 | kJ/mol | Est | Snodgrass, Coe, et al., 1995 | gas phase; Stated electron affinity is the Vertical Detachment Energy; B |
ΔrH° | 35. | kJ/mol | PES | Coe, Snodgrass, et al., 1985 | gas phase; ΔrH<; M |
By formula: H- + C3H9Al = (H- • C3H9Al)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | >354.8 ± 2.1 | kJ/mol | IMRB | den Berg, Ingemann, et al., 1992 | gas phase; Hydride affinity > (CF3)2CO. Computations indicate HOF(A-) ca. -46 kcal/mol, dHaff ca. 74 kcal/mol; B |
By formula: (H- • H3N) + H3N = (H- • 2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 33.9 | kJ/mol | Est | Snodgrass, Coe, et al., 1995 | gas phase; Affinity: shift in apparent EA from lesser-solvated ion. Ignores any neutral-neutral bond.; B |
By formula: H- + O2S = (H- • O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 260. ± 67. | kJ/mol | IMRB | Sheldon, Currie, et al., 1985 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 240. ± 67. | kJ/mol | IMRB | Sheldon, Currie, et al., 1985 | gas phase; B |
By formula: H- + C6H15B = (H- • C6H15B)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 290. ± 10. | kJ/mol | Endo | Workman and Squires, 1988 | gas phase; From Endo threshold for hydride transfer to CO2; B |
By formula: H- + C6MoO6 = (H- • C6MoO6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 184. ± 17. | kJ/mol | N/A | Lane and Squires, 1988 | gas phase; Hydride affinity between CH2=O and PhCH=O; B |
By formula: H- + C6O6W = (H- • C6O6W)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 184. ± 17. | kJ/mol | N/A | Lane and Squires, 1988 | gas phase; Hydride affinity between CH2=O and PhCH=O; B |
By formula: H- + H6B2 = (H- • H6B2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 309.6 | kJ/mol | Ther | Workman and Squires, 1988 | gas phase; Calculated from data on BH3..BH4-; B |
= C7H15O-
By formula: H- = C7H15O-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 181. ± 14. | kJ/mol | N/A | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
By formula: H- + CH2BN = (H- • CH2BN)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 112.5 | kJ/mol | N/A | Workman and Squires, 1988 | gas phase; Calculated from data on BH3..CN-; B |
= C7H13O-
By formula: H- = C7H13O-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 154. ± 9.6 | kJ/mol | N/A | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
By formula: H- + C5FeO5 = (H- • C5FeO5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 235. ± 13. | kJ/mol | IMRB | Lane, Sallans, et al., 1985 | gas phase; B |
By formula: H- + HO = (H- • HO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 217. ± 17. | kJ/mol | Ther | de Koening and Nibbering, 1984 | gas phase; B |
By formula: H- + H6Al2 = H7Al2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 322. ± 17. | kJ/mol | CIDT | Goebbert, Hernandez, et al., 2005 | gas phase; B |
+ = H4Al-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 314. ± 17. | kJ/mol | CIDT | Goebbert, Hernandez, et al., 2005 | gas phase; B |
+ = C6H6F3Si-
By formula: H- + C6H5F3Si = C6H6F3Si-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 268. ± 13. | kJ/mol | CIDT | Krouse, Lardin, et al., 2003 | gas phase; B |
References
Go To: Top, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Shiell, Hu, et al., 2000
Shiell, R.C.; Hu, X.K.; Hu, Q.C.J.; Hepburn, J.W.,
Threshold Ion-pair Production spectroscopy (TIPPS) of H2 and D2,
Faraday Disc. Chem. Soc., 2000, 115, 331, https://doi.org/10.1039/a909428h
. [all data]
Pratt, McCormack, et al., 1992
Pratt, S.T.; McCormack, E.F.; Dehmer, J.L.; Dehmer, P.M.,
Field-Induced Ion-Pair Formation in Molecular Hydrogen,
Phys. Rev. Lett., 1992, 68, 5, 584, https://doi.org/10.1103/PhysRevLett.68.584
. [all data]
Gurvich, Veyts, et al.
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.,
Hemisphere Publishing, NY, 1989, V. 1 2, Thermodynamic Properties of Individual Substances, 4th Ed. [all data]
Lykke, Murray, et al., 1991
Lykke, K.R.; Murray, K.K.; Lineberger, W.C.,
Threshold Photodetachment of H-,
Phys. Rev. A, 1991, 43, 11, 6104, https://doi.org/10.1103/PhysRevA.43.6104
. [all data]
Workman and Squires, 1988
Workman, D.B.; Squires, R.R.,
Hydride Binding Energies of Boranes,
Inorg. Chem., 1988, 27, 11, 1846, https://doi.org/10.1021/ic00284a003
. [all data]
Krivtsov, Titova, et al., 1977
Krivtsov, N.V.; Titova, K.V.; Rosolovskii, V.Ya.,
Thermochemical study of complex borates,
Russ. J. Inorg. Chem., 1977, 22, 374. [all data]
Altschuller, 1955
Altschuller, A.P.,
Lattice Energies and Related Thermodynamic Properties of the Alkali Metal Borohydrides and of the Borohydride Ion,
J. Am. Chem. Soc., 1955, 77, 21, 5455, https://doi.org/10.1021/ja01626a001
. [all data]
Miller, Leopold, et al., 1985
Miller, T.M.; Leopold, D.G.; Murray, K.K.; Lineberger, W.C.,
The Photoelectron Spectrum of H3O-,
Bull. Am. Phys. Soc., 1985, 30, 880. [all data]
Paulson and Henchman, 1984
Paulson, J.F.; Henchman, M.J.,
On the Formation of H3O- in an Ion-Molecule Reaction
in Ionic Processes in the Gas Phase,, M.A. Almoster Ferreira, Ed., Reidel, Dordrecht,, 1984, 331. [all data]
Griffiths and Harris, 1989
Griffiths, W.J.; Harris, F.M.,
Amended Interpretation of the Results Obtained in an Experimental Investigation of the Structure of the H3O- Ion,
Int. J. Mass Spectrom. Ion Proc., 1989, 87, 1, R25, https://doi.org/10.1016/0168-1176(89)80017-5
. [all data]
Paulson and Henchman, 1982
Paulson, J.F.; Henchman, M.J.,
The Hydrated Negative Hydrogen Ion,
Bull. Am. Phys. Soc., 1982, 27, 108. [all data]
Hajdasz, Ho, et al., 1994
Hajdasz, D.J.; Ho, Y.; Squires, R.R.,
Gas-Phase Chemistry of Pentacoordinate Silicon Hydrides,
J. Am. Chem. Soc., 1994, 116, 23, 10751, https://doi.org/10.1021/ja00102a045
. [all data]
Hajdasz and Squires, 1986
Hajdasz, D.J.; Squires, R.R.,
Hypervalent silicon hydrides: SiH5-,
J. Am. Chem. Soc., 1986, 108, 3139. [all data]
Snodgrass, Coe, et al., 1995
Snodgrass, J.T.; Coe, J.V.; Freidhoff, C.B.; Mchugh, K.M.; Arnold, S.T.; Bowen, K.H.,
Negative ion photoelectron spectroscopy of NH2-(NH3)1 and NH2-(NH3)2: Gas phase basicities of partially solvated anions,
J. Phys. Chem., 1995, 99, 24, 9675, https://doi.org/10.1021/j100024a006
. [all data]
Coe, Snodgrass, et al., 1985
Coe, J.V.; Snodgrass, J.T.; Friedhoff, C.B.; McHugh, K.M.; Bowen, K.H.,
Negative ion photoelectron spectroscopy of the negative ion H-(NH3),
J. Chem. Phys., 1985, 83, 3169. [all data]
den Berg, Ingemann, et al., 1992
den Berg, K.J. van; Ingemann, S.; Nibbering, N.M.M.,
Gas Phase Reactions of Negative Ions with Trimethylaluminum: Formation and Reactivity of the Me3AlH- Ion.,
Org. Mass Spectrom., 1992, 27, 4, 523, https://doi.org/10.1002/oms.1210270427
. [all data]
Sheldon, Currie, et al., 1985
Sheldon, J.C.; Currie, G.J.; Lahnstein, J.; Hayes, R.N.; Bowie, J.H.,
Gas Phase Ion Chemistry of Ambident Nucleophiles. Reactions of Alkoxide and Thiomethoxide Negative Ions with Hydrogen Free Molecules.,
Nouv. J. Chem., 1985, 9, 205. [all data]
Lane and Squires, 1988
Lane, K.R.; Squires, R.R.,
Hydride Transfer to Transition Metal Carbonyls in the Gas Phase. Formation and Relative Stabilities of Anionic Formyl Complexes,
Polyhedron, 1988, 7, 16-17, 1609, https://doi.org/10.1016/S0277-5387(00)81786-6
. [all data]
Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T.,
The gas phase acidity of aliphatic alcohols,
J. Am. Chem. Soc., 1983, 105, 2203. [all data]
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Lane, Sallans, et al., 1985
Lane, K.R.; Sallans, L.; Squires, R.R.,
Anion affinities of transition metal carbonyls. A thermochemical correlation for iron tetracarbonyl acyl negative ions,
J. Am. Chem. Soc., 1985, 107, 5369. [all data]
de Koening and Nibbering, 1984
de Koening, L.J.; Nibbering, N.M.M.,
Formation of the Long-Lived H2O-. Ion in the Gas Phase,
J. Am. Chem. Soc., 1984, 106, 25, 7971, https://doi.org/10.1021/ja00337a054
. [all data]
Goebbert, Hernandez, et al., 2005
Goebbert, D.J.; Hernandez, H.; Francisco, J.S.; Wenthold, P.G.,
The binding energy and bonding in dialane,
J. Am. Chem. Soc., 2005, 127, 33, 11684-11689, https://doi.org/10.1021/ja0424070
. [all data]
Krouse, Lardin, et al., 2003
Krouse, I.H.; Lardin, H.A.; Wenthold, P.G.,
Gas-phase ion chemistry and ion thermochemistry of phenyltrifluorosilane,
Int. J. Mass Spectrom., 2003, 227, 3, 303-314, https://doi.org/10.1016/S1387-3806(03)00080-0
. [all data]
Notes
Go To: Top, Reaction thermochemistry data, References
- Symbols used in this document:
ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.