Dimanganese decacarbonyl
- Formula: C10Mn2O10
- Molecular weight: 389.9771
- IUPAC Standard InChIKey: QFEOTYVTTQCYAZ-UHFFFAOYSA-N
- CAS Registry Number: 10170-69-1
- Chemical structure:
This structure is also available as a 2d Mol file - Other names: Mn2(CO)10; Manganese carbonyl; Manganese, decacarbonyldi-,; Decacarbonyldimanganese; Manganese carbonyl (Mn2(CO)10); Manganese, decacarbonyldi-, (Mn-Mn)
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Reaction thermochemistry data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: José A. Martinho Simões
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
(solution) = 2C5MnO5 (solution)
By formula: C10Mn2O10 (solution) = 2C5MnO5 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 158. ± 17. | kJ/mol | ES/EChem | Pugh and Meyer T.J., 1992 | solvent: Acetonitrile; The value relies on the reaction Gibbs energy, 118. ± 17. kJ/mol Pugh and Meyer T.J., 1992, and an estimated value, 133.9 J/(mol K), for the reaction entropy Pugh and Meyer T.J., 1992 |
ΔrH° | >104.2 | kJ/mol | ES/EChem | Pugh and Meyer, 1988 | solvent: Acetonitrile; The lower limit is the reaction Gibbs energy |
ΔrH° | 159. ± 21. | kJ/mol | PAC | Goodman, Peters, et al., 1986 | solvent: Hexane, cyclohexane, thf or acetonitrile; The average value of the enthalpy of the reaction Mn2(CO)10(solution) = 2xMn(CO)5(solution) + (1-x)Mn2(CO)9(solution) + (1-x)CO(solution) in the solvents indicated is 53.4 ± 5.2 kJ/mol. This value, together with several estimates and auxiliary data led to the reaction enthalpy for the cleavage of Mn-Mn bond |
ΔrH° | >154. | kJ/mol | KinS | Hopgood and Poë, 1966 | solvent: Decalin; Please also see Poë, 1981. The reaction enthalpy was derived from the enthalpy of activation, 153.8 ± 1.6 kJ/mol Hopgood and Poë, 1966 Poë, 1981, by assuming a negligible barrier for the radical recombination. This procedure was later considered to yield a low limit of the reaction enthalpy Poë, 1983 Marcomini and Poë, 1984 Marcomini and Poë, 1983 Coville, Stolzenberg, et al., 1983. See also Schmidt, Trogler, et al., 1984 |
(solution) + (solution) = 2C10MnO10Re (solution)
By formula: C10Mn2O10 (solution) + C10O10Re2 (solution) = 2C10MnO10Re (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 121. ± 31. | kJ/mol | PC | Harel and Adamson, 1986 | solvent: Cyclohexane; The reaction enthalpy was calculated from the enthalpies of the following reactions: Mn2(CO)10(solution) + I2(solution) = 2Mn(CO)5(I)(solution), -187.9 ± 8.4 kJ/mol, Re2(CO)10(solution) + I2(solution) = 2Re(CO)5(I)(solution), -157. ± 16. kJ/mol, and MnRe(CO)10(solution) + I2(solution) = Mn(CO)5(I)(solution) + Re(CO)5(I)(solution), -233. ± 13. kJ/mol |
ΔrH° | 34.4 ± 1.3 | kJ/mol | EqS | Marcomini and Poë, 1984 | solvent: Decalin; Temperature range: 443-463 K |
By formula: C10Mn2O10 (cr) + I2 (cr) = 2C5IMnO5 (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -185.0 ± 8.7 | kJ/mol | PC | Harel and Adamson, 1986 | The reaction enthalpy was calculated from the enthalpy of the same reaction in cyclohexane, -187.9 ± 8.4 kJ/mol Harel and Adamson, 1986, and from the solution enthalpies of Mn2(CO)10(cr), 36.0 ± 2.1 kJ/mol, I2(cr), 20.5 ± 0.4 kJ/mol, and Mn(CO)5(I)(cr), 26.8 ± 0.5 kJ/mol Harel and Adamson, 1986. The latter value refers to the solution in benzene and is therefore taken as an approximation |
(g) = 2C5MnO5 (g)
By formula: C10Mn2O10 (g) = 2C5MnO5 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | >176. | kJ/mol | EST | Smith, 1988 | |
ΔrH° | 94. | kJ/mol | EST | Connor, Zafarani-Moattar, et al., 1982 | |
ΔrH° | 96. ± 13. | kJ/mol | EG/EIMS | Bidinosti and McIntyre, 1970 | The reaction enthalpy includes an estimated correction to 298 K. A value of 104.2 ± 8.4 kJ/mol was reported at an average temperature of 540 K Bidinosti and McIntyre, 1970. The enthalpy of formation relies on -1585.3 ± 4.3 kJ/mol for the enthalpy of formation of Mn2(CO)10(g) |
(solution) + (solution) = 2 (solution)
By formula: C10Mn2O10 (solution) + H2 (solution) = 2C5HMnO5 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36.4 ± 1.3 | kJ/mol | EqS | Klingler R.J. and Rathke, 1992 | solvent: Supercritical carbon dioxide; Temperature range: 373-463 K |
(solution) + (solution) = 2C9CoMnO9 (solution)
By formula: C10Mn2O10 (solution) + C8Co2O8 (solution) = 2C9CoMnO9 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 3.3 ± 1.3 | kJ/mol | EqS | Klingler R.J. and Rathke, 1992 | solvent: Supercritical carbon dioxide; Temperature range: 353-453 K |
(g) = C9Mn2O9 (g) + (g)
By formula: C10Mn2O10 (g) = C9Mn2O9 (g) + CO (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 159.0 ± 8.4 | kJ/mol | LPHP | Smith, 1988 | The reaction enthalpy relies on an activation energy of 159.0 ± 8.4 kJ/mol and assumes a negligible activation barrier for product recombination. |
(solution) + (solution) = 2 (solution)
By formula: C10Mn2O10 (solution) + I2 (solution) = 2C5IMnO5 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -187.9 ± 8.4 | kJ/mol | PC | Harel and Adamson, 1986 | solvent: Cyclohexane |
(cr) + 2 (g) = 2 (cr) + 10 (g)
By formula: C10Mn2O10 (cr) + 2Br2 (g) = 2Br2Mn (cr) + 10CO (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -263.6 ± 8.2 | kJ/mol | HAL-HFC | Connor, Zafarani-Moattar, et al., 1982 |
References
Go To: Top, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Pugh and Meyer T.J., 1992
Pugh, J.R.; Meyer T.J.,
J. Am. Chem. Soc., 1992, 114, 3784. [all data]
Pugh and Meyer, 1988
Pugh, J.R.; Meyer, T.J.,
J. Am. Chem. Soc., 1988, 110, 8245. [all data]
Goodman, Peters, et al., 1986
Goodman, J.L.; Peters, K.S.; Vaida, V.,
Organometallics, 1986, 5, 815. [all data]
Hopgood and Poë, 1966
Hopgood, D.; Poë, A.J.,
J. Chem. Soc., Chem. Commun., 1966, 831.. [all data]
Poë, 1981
Poë, A.,
ACS Symp. Ser., 1981, No. 155, 135. [all data]
Poë, 1983
Poë, A.,
Chem. Brit., 1983, 19, 997. [all data]
Marcomini and Poë, 1984
Marcomini, A.; Poë, A.,
J. Chem. Soc., Dalton Trans., 1984, 95.. [all data]
Marcomini and Poë, 1983
Marcomini, A.; Poë, A.,
J. Am. Chem. Soc., 1983, 105, 6952. [all data]
Coville, Stolzenberg, et al., 1983
Coville, N.J.; Stolzenberg, A.M.; Muetterties, E.L.,
J. Am. Chem. Soc., 1983, 105, 2499. [all data]
Schmidt, Trogler, et al., 1984
Schmidt, S.P.; Trogler, W.C.; Basolo, F.,
J. Am. Chem. Soc., 1984, 106, 1308. [all data]
Harel and Adamson, 1986
Harel, Y.; Adamson, A.W.,
J. Phys. Chem., 1986, 90, 6693. [all data]
Smith, 1988
Smith, G.P.,
Polyhedron, 1988, 7, 1605. [all data]
Connor, Zafarani-Moattar, et al., 1982
Connor, J.A.; Zafarani-Moattar, M.T.; Bickerton, J.; El-Saied, N.I.; Suradi, S.; Carson, R.; Al Takkhin, G.; Skinner, H.A.,
Organomet., 1982, 1, 1166. [all data]
Bidinosti and McIntyre, 1970
Bidinosti, D.R.; McIntyre, N.S.,
Mass spectrometric study of the thermal decomposition of dimanganese decacarbonyl and dicobalt octacarbonyl,
Can. J. Chem., 1970, 48, 593. [all data]
Klingler R.J. and Rathke, 1992
Klingler R.J.; Rathke, J.W.,
Inorg. Chem., 1992, 31, 804. [all data]
Notes
Go To: Top, Reaction thermochemistry data, References
- Symbols used in this document:
ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.