Butane, 2,2,3,3-tetramethyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-54.06kcal/molN/AGood, 1972Value computed using ΔfHsolid° value of -269.1±1.2 kj/mol from Good, 1972 and ΔsubH° value of 42.9 kj/mol from Prosen and Rossini, 1945.; DRB
Δfgas-53.99 ± 0.46kcal/molCcbProsen and Rossini, 1945ALS
Quantity Value Units Method Reference Comment
gas93.05 ± 0.30cal/mol*KN/AScott D.W., 1952GT

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
31.040200.Scott D.W., 1974Recommended values were obtained from the consistent correlation scheme for alkanes [ Scott D.W., 1974, 2, Scott D.W., 1974]. This approach gives a good agreement with experimental data available for alkanes. However, large uncertainties could be expected at high temperatures.; GT
41.260273.15
44.7 ± 0.1298.15
45.000300.
58.320400.
70.210500.
80.600600.
89.699700.
97.801800.
104.90900.
111.201000.
116.801100.
121.801200.
126.001300.
130.001400.
134.001500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfsolid-64.32 ± 0.28kcal/molCcbGood, 1972ALS
Δfsolid-64.24 ± 0.46kcal/molCcbProsen and Rossini, 1945ALS
Quantity Value Units Method Reference Comment
Δcsolid-1302.93 ± 0.26kcal/molCcbGood, 1972Corresponding Δfsolid = -64.31 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcsolid-1303.03 ± 0.44kcal/molCcbProsen and Rossini, 1945Corresponding Δfsolid = -64.21 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
solid,1 bar65.430cal/mol*KN/AScott, Douslin, et al., 1952DH
solid,1 bar61.40cal/mol*KN/AParks, Huffman, et al., 1930Extrapolation below 90 K, 64.68 J/mol*K.; DH

Constant pressure heat capacity of solid

Cp,solid (cal/mol*K) Temperature (K) Reference Comment
57.271301.60Scott, Douslin, et al., 1952T = 12 to 374 K. Value is unsmoothed experimental datum.; DH
55.50295.4Parks, Huffman, et al., 1930T = 89 to 295 K. Value is unsmoothed experimental datum.; DH

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Good, 1972
Good, W.D., The enthalpies of combustion and formation of n-octane and 2,2,3,3-tetramethylbutane, J. Chem. Thermodyn., 1972, 4, 709-714. [all data]

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of combustion and formation of the paraffin hydrocarbons at 25° C, J. Res. NBS, 1945, 263-267. [all data]

Scott D.W., 1952
Scott D.W., 2,2,3,3-Tetramethylbutane: heat capacity, heats of transition, fusion and sublimation, vapor pressure, entropy and thermodynamic functions, J. Am. Chem. Soc., 1952, 74, 883-887. [all data]

Scott D.W., 1974
Scott D.W., Chemical Thermodynamic Properties of Hydrocarbons and Related Substances. Properties of the Alkane Hydrocarbons, C1 through C10 in the Ideal Gas State from 0 to 1500 K. U.S. Bureau of Mines, Bulletin 666, 1974. [all data]

Scott D.W., 1974, 2
Scott D.W., Correlation of the chemical thermodynamic properties of alkane hydrocarbons, J. Chem. Phys., 1974, 60, 3144-3165. [all data]

Scott, Douslin, et al., 1952
Scott, D.W.; Douslin, D.R.; Gross, M.E.; Oliver, G.D.; Huffman, H.M., 2,2,3,3-Tetramethylbutane: Heat capacity, heats of transition, fusion and sublimation, vapor pressure, entropy and thermodynamic functions, J. Am. Chem. Soc., 1952, 74, 883-887. [all data]

Parks, Huffman, et al., 1930
Parks, G.S.; Huffman, H.M.; Thomas, S.B., Thermal data on organic compounds. VI. The heat capacities, entropies and free energies of some saturated, non-benzenoid hydrocarbons, J. Am. Chem. Soc., 1930, 52, 1032-1041. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References