Mercury bromide


Gas phase thermochemistry data

Go To: Top, Constants of diatomic molecules, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas24.900kcal/molReviewChase, 1998Data last reviewed in December, 1961
Quantity Value Units Method Reference Comment
gas,1 bar64.900cal/mol*KReviewChase, 1998Data last reviewed in December, 1961

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 6000.
A 8.940220
B 0.272397
C -0.000507
D 0.000043
E -0.011415
F 22.18420
G 75.57271
H 24.90010
ReferenceChase, 1998
Comment Data last reviewed in December, 1961

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through January, 1975

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for (202)Hg81Br
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
E (40720) (166) (1.1)        E → X 1 (40710)
Rao and Rao, 1944
D 2Π3/2 38574.4 228.5 2 H 0.950        D ↔ X V 38595.5 H
Wieland, 1929; missing citation; missing citation
C (2Π1/2) 34722.0 278.6 3 H 1.82        C ↔ X V 34767.5 3 H
Wieland, 1929; Wieland, 1932; Howell, 1944; Wieland, 1948; missing citation; missing citation
B 2Σ+ 23485.0 135.075 H 0.275        B ↔ X R 23459.5 H
Wieland, 1939; Wieland, 1948, 2; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
X 2Σ+ 0 186.47 H 0.9665 -0.0090        
Wieland, 1960

Notes

1Headless diffuse bands.
2Constants for 202Hg81Br.
3From Patel and Darji, 1968, Greig, Gunning, et al., 1970. Earlier analyses of C-X by Sastry, 1941, Sastry, 1941, 2 and Krishnamurthy, 1958 as well as the suggested existence of an additional system in the region 36100 - 37000 cm-1 Krishnamurthy, 1958, Patel and Darji, 1968 are not convincing.

References

Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, NIST Free Links, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Rao and Rao, 1944
Rao, K.R.; Rao, G.V.S.R., A new band system of the HgBr molecule, Indian J. Phys., 1944, 18, 281. [all data]

Wieland, 1929
Wieland, K., Bandenspektren der quecksilber-, cadmium- und zinkhalogenide, Helv. Phys. Acta, 1929, 2, 46. [all data]

Wieland, 1932
Wieland, K., Absorptions- und fluoreszenzspektren dampfformiger quecksilberhalogenide. II. HgBr2 und HgCl2, Z. Phys., 1932, 77, 157. [all data]

Howell, 1944
Howell, H.G., The ultra-violet spectra and electron configuration of HgF and related halide molecules, Proc. R. Soc. London A, 1944, 182, 95. [all data]

Wieland, 1948
Wieland, K., Spectres d'absorption des halogenures de mercure (HgX2) en equilibre thermique au-dessus de 1000°C, J. Chim. Phys. Phys.-Chim. Biol., 1948, 45, 3. [all data]

Wieland, 1939
Wieland, K., Vereinfachung des fluoreszenzspektrums von HgBr durch fremdgas-zusatz, Helv. Phys. Acta, 1939, 12, 295. [all data]

Wieland, 1948, 2
Wieland, K., Molekulspektren mit Ionencharakter und ihre Beeinflussung durch Fremdgase in Contribution a l'Etude de la Structure Moleculaire, Desoer, Liege, ed(s)., 1948, 229-238. [all data]

Wieland, 1960
Wieland, K., Bandensysteme B(2Σ+) → X(2Σ+) und Dissoziationswerte der Radikale HgJ und HgBr, Z. Elektrochem., 1960, 64, 761. [all data]

Patel and Darji, 1968
Patel, M.M.; Darji, A.B., Band spectrum of mercury bromide in the ultraviolet region, Indian J. Phys., 1968, 42, 110. [all data]

Greig, Gunning, et al., 1970
Greig, G.; Gunning, H.E.; Strausz, O.P., Reactions of metal atoms. II. The combination of mercury and bromine atoms and the dimerization of HgBr, J. Chem. Phys., 1970, 52, 3684. [all data]

Sastry, 1941
Sastry, M.G., Ultra violet band spectrum of HgBr, Curr. Sci., 1941, 10, 197. [all data]

Sastry, 1941, 2
Sastry, M.G., The ultra-violet band spectrum of mercury bromide, Proc. Natl. Inst. Sci. India, 1941, 7, 359. [all data]

Krishnamurthy, 1958
Krishnamurthy, V.G., Ultraviolet bands of mercury bromide, Z. Phys., 1958, 152, 242. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, NIST Free Links, References