Naphthalene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas150. ± 10.kJ/molAVGN/AAverage of 7 values; Individual data points

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
36.1850.Thermodynamics Research Center, 1997p=1 bar. Selected values of S(T) and Cp(T) agree with those calculated by statistical thermodynamics method [ Dorofeeva O.V., 1986, Dorofeeva O.V., 1988] within 1.2 J/mol*K. Discrepancies with other calculations [ Barrow G.M., 1951, McClellan A.L., 1955, 79CHE/KUD, Lielmezs J., 1981] reach 2-3 J/mol*K.; GT
47.50100.
63.89150.
84.99200.
120.52273.15
133.02298.15
133.94300.
181.16400.
220.70500.
252.37600.
277.77700.
298.43800.
315.50900.
329.771000.
341.81100.
352.01200.
360.81300.
368.21400.
374.71500.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
201.6 ± 2.0451.0Barrow G.M., 1951GT
226.7 ± 2.3522.7

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DH - Eugene S. Domalski and Elizabeth D. Hearing
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
liquid217.59J/mol*KN/AChirico, Knipmeyer, et al., 1993DH
Quantity Value Units Method Reference Comment
Δfsolid77. ± 10.kJ/molAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δcsolid-5160. ± 20.kJ/molAVGN/AAverage of 18 values; Individual data points
Quantity Value Units Method Reference Comment
solid,1 bar167.40J/mol*KN/AMcCullough, Finke, et al., 1957DH
solid,1 bar162.84J/mol*KN/ASouthard and Brickwedde, 1933DH
solid,1 bar166.86J/mol*KN/APearce and Tanner, 1934Extrapolation below 90 K, 58.32 J/mol*K.; DH
solid,1 bar166.9J/mol*KN/AHuffman, Parks, et al., 1930Extrapolation below 90 K, 53.09 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
196.06298.15Chirico, Knipmeyer, et al., 1993T = 260 to 700 K.; DH

Constant pressure heat capacity of solid

Cp,solid (J/mol*K) Temperature (K) Reference Comment
213.330.David, 1964T = 298 to 353 K. Mean value. T = uncertain.; DH
188.4342.Rastogi and Bassi, 1964T = 342, 384 K.; DH
165.69298.15McCullough, Finke, et al., 1957T = 10 to 370 K.; DH
156.1298.15Ueberreiter and Orthmann, 1950T = 293 to 368 K. Equation only.; DH
195.8298.1Eibert, 1944T = 30 to 200°C, equations only in t°C. Cp(c) = 0.365 cal/g*K (30 to 80°C); Cp(liq) = 0.329 + 0.000824t cal/g*K (80 to 200°C).; DH
161.5298.1Schmidt, 1941T = 22 to 200°C, equations only, in t°C. Cp(c) = 0.2595 + 0.001672t cal/g*K (22 to 80°C); Cp(liq) = 0.3360 + 0.0008180t cal/g*K (80 to 200°C).; DH
168.11301.58Hicks, 1938T = 58 to 304 K. Value is unsmoothed experimental datum.; DH
168.07297.6Pearce and Tanner, 1934T = 94 to 298 K. Value is unsmoothed experimental datum.; DH
165.48294.68Southard and Brickwedde, 1933T = 15 to 295 K. Value is unsmoothed experimental datum.; DH
169.0303.Spaght, Thomas, et al., 1932T = 30 to 190°C.; DH
163.6295.1Huffman, Parks, et al., 1930T = 91 to 295 K.; DH
159.4298.Andrews, Lynn, et al., 1926T = 12 to 300°C.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Tboil490. ± 5.KAVGN/AAverage of 10 out of 11 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus353.2 ± 0.7KAVGN/AAverage of 55 out of 57 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple353.39 ± 0.09KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Tc748. ± 6.KAVGN/AAverage of 13 out of 14 values; Individual data points
Quantity Value Units Method Reference Comment
Pc41. ± 1.barAVGN/AAverage of 10 out of 11 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.407l/molN/ATsonopoulos and Ambrose, 1995 
Vc0.409l/molN/ACheng, 1963Uncertainty assigned by TRC = 0.06 l/mol; TRC
Quantity Value Units Method Reference Comment
ρc2.46 ± 0.05mol/lN/ATsonopoulos and Ambrose, 1995 
ρc2.497mol/lN/AChirico, Knipmeyer, et al., 1993, 2Uncertainty assigned by TRC = 0.078 mol/l; TRC
ρc2.450mol/lN/ASchroeer, 1941Uncertainty assigned by TRC = 0.04 mol/l; TRC
ρc2.456mol/lN/AZhuravlev, 1937Uncertainty assigned by TRC = 0.04 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap54.6kJ/molCGCZhao, Unhannanant, et al., 2008AC
Δvap60.3 ± 1.1kJ/molGCHaftka, Parsons, et al., 2006Based on data from 333. to 403. K.; AC
Δvap53.4kJ/molCGCChickos, Hesse, et al., 1998AC
Δvap56.6kJ/molCGCChickos, Hosseini, et al., 1995Based on data from 403. to 453. K.; AC
Quantity Value Units Method Reference Comment
Δsub71. ± 5.kJ/molAVGN/AAverage of 17 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
70.850323.N/ATorres-Gomez, Barreiro-Rodriguez, et al., 1988DH
56.1398.GCLei, Chankalal, et al., 2002Based on data from 323. to 473. K.; AC
47.6 ± 1.8491. to 747.DSCBoller and Wiedemann, 1998AC
45.4475.DSCBack, Grzyll, et al., 1996Based on data from 460. to 647. K.; AC
48.7 ± 0.3400.EBChirico, Knipmeyer, et al., 1993AC
46.4440.EBChirico, Knipmeyer, et al., 1993AC
44.0480.EBChirico, Knipmeyer, et al., 1993AC
41.5520.EBChirico, Knipmeyer, et al., 1993AC
44.4528.N/ALee and Holder, 1993Based on data from 513. to 613. K.; AC
47.9423.EBAmbrose, Ewing, et al., 1990Based on data from 418. to 613. K.; AC
50.6367.AStephenson and Malanowski, 1987Based on data from 352. to 500. K.; AC
44.8506.AStephenson and Malanowski, 1987Based on data from 491. to 565. K.; AC
43.2578.AStephenson and Malanowski, 1987Based on data from 563. to 663. K.; AC
43.3676.AStephenson and Malanowski, 1987Based on data from 661. to 750. K.; AC
50.3 ± 0.2370.N/Ade Kruif, Kuipers, et al., 1981Based on data from 353. to 388. K.; AC
44.7466.N/AWilson, Johnston, et al., 1981Based on data from 441. to 727. K.; AC
50.7369.N/AFowler, Trump, et al., 1968Based on data from 354. to 453. K.; AC
49.0414.N/ACamin and Rossini, 1955Based on data from 399. to 491. K.; AC
46.4441.CBarrow and McClellan, 1951AC
48.3379.ICramer, 1943AC
47.2423.IMortimer and Murphy, 1923Based on data from 373. to 473. K.; AC
47.7427.INELSON and SENSEMAN, 1922Based on data from 360. to 494. K.; AC

Entropy of vaporization

ΔvapS (J/mol*K) Temperature (K) Reference Comment
219.3323.Torres-Gomez, Barreiro-Rodriguez, et al., 1988DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
353.48 to 452.304.271171831.571-61.329Fowler, Trump, et al., 1968Coefficents calculated by NIST from author's data.
399.47 to 491.793.970671606.529-85.923Camin and Rossini, 1955 

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
72.320298.15N/ATorres-Gomez, Barreiro-Rodriguez, et al., 1988DH
72.8327.GSGrayson and Fosbraey, 2006Based on data from 302. to 352. K.; AC
64. ± 0.5281. to 290.LEMcEachern and Sandoval, 2001AC
88.0 ± 2.5267. to 303.MEBoller and Wiedemann, 1998AC
71.7333.GSNass, Lenoir, et al., 1995Based on data from 313. to 353. K.; AC
73.7 ± 1.0258.GSWania, Shiu, et al., 1994Based on data from 243. to 273. K.; AC
78. ± 1.337. to 352.GCKhudyakov, 1988AC
71. ± 4.323.DSCTorres-Gomez, Barreiro-Rodriguez, et al., 1988AC
73.4315.GSSATO, INOMATA, et al., 1986Based on data from 299. to 331. K.; AC
72.3 ± 0.8293. to 331.QRGlukhova, Arkhangelova, et al., 1985AC
69.9333. to 393.GSMatsubara and Kuwamoto, 1985AC
75.8 ± 1.1303.GSSonnefeld, Zoller, et al., 1983Based on data from 283. to 323. K.; AC
72.8 ± 0.3271. to 285.MEColomina, Jimenez, et al., 1982AC
72.5 ± 0.1274. to 353.DMde Kruif, Kuipers, et al., 1981AC
72.6 ± 0.6253. to 273.TEKruif, 1980AC
76.0 ± 2.0328. to 398.DSCMurray, Cavell, et al., 1980AC
71.3293.GSMacknick and Prausnitz, 1979Based on data from 280. to 305. K.; AC
74.8 ± 0.4253. to 273.TEDe Kruif and Van Ginkel, 1977AC
73.9 ± 0.2253. to 273.MEDe Kruif and Van Ginkel, 1977AC
72.5 ± 0.3263. to 343.DMAmbrose, Lawrenson, et al., 1975AC
67.8 ± 3.5280.HSAChickos, 1975AC
74.4 ± 1.7303. to 329.TSGCMcEachern, Sandoval, et al., 1975AC
72.7 ± 1.7283.VRadchenko and Kitaigorodskii, 1974ALS
72.7283. to 323.MERadchenko, 1971AC
66.53 ± 0.84283.VKaryakin, Rabinovich, et al., 1968ALS
72.7 ± 0.3230. to 260.KGMiller, 1963See also Cox and Pilcher, 1970.; AC
66.3 ± 2.3354.7VAihara, 1959crystal phase; ALS
66.3276. to 283.VAihara, 1959, 2AC
69.2268.N/AHoyer and Peperle, 1958Based on data from 253. to 283. K.; AC
65.8293.EffusionSklyarenko, Markin, et al., 1958Based on data from 283. to 303. K.; AC
72.1292.N/ASherwood and Bryant, 1957Based on data from 273. to 311. K.; AC
72.4279. to 294.N/ABradley and Cleasby, 1953See also Jones, 1960 and Sears and Hopke, 1954.; AC
72.383279.7VBradley and Cleasby, 1953, 2ALS
65.7297.EffusionZibberman-Granovskaya, 1940Based on data from 288. to 306. K.; AC
76.6237. to 276.N/AAndrews, 1925AC
82.0293.MESwan and Mack, 1925Based on data from 283. to 303. K.; AC

Entropy of sublimation

ΔsubS (J/mol*K) Temperature (K) Reference Comment
242.6298.15Torres-Gomez, Barreiro-Rodriguez, et al., 1988DH

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Method Reference Comment
18.811353.44N/AMastrangelo, 1957DH
18.226353.43N/AMcCullough, Finke, et al., 1957DH
19.200353.0N/ASpaght, Thomas, et al., 1932DH
19.1353.5DSCSharma, Gupta, et al., 2008AC
16.44353.8DSCHafsaoui and Mahmoud, 2007AC
19.55354.7DSCKhimeche and Dahmani, 2006AC
19.55354.7DSCKhimeche and Dahmani, 2006, 2AC
19.0353.4ACChirico, Knipmeyer, et al., 2002Based on data from 5. to 440. K.; AC
19.1353.4N/AAcree, 1991AC
19.020354.1N/ASyunyaev, Tumanyan, et al., 1984Relative error in determination ± 5%.; DH
19.100353.5N/ARastogi and Bassi, 1964DH
18.785353.N/AUeberreiter and Orthmann, 1950DH
18.790353.4N/AEibert, 1944DH
19.040353.4N/ASchmidt, 1941DH
19.000353.1N/AAndrews, Lynn, et al., 1926DH
19.250353.N/ADavid, 1964Temperature not measured.; DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
51.57353.43McCullough, Finke, et al., 1957DH
54.4353.0Spaght, Thomas, et al., 1932DH
53.7354.1Syunyaev, Tumanyan, et al., 1984Relative; DH
54.0353.5Rastogi and Bassi, 1964DH
53.2353.Ueberreiter and Orthmann, 1950DH
53.2353.4Eibert, 1944DH
53.9353.4Schmidt, 1941DH
53.8353.1Andrews, Lynn, et al., 1926DH
55.353.David, 1964Temperature; DH

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
19.046353.376crystaline, IliquidAndon and Connett, 1980DH
19.000353.8crystaline, IliquidRadomska and Radomski, 1980DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
53.90353.376crystaline, IliquidAndon and Connett, 1980DH
53.70353.8crystaline, IliquidRadomska and Radomski, 1980DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C10H7- + Hydrogen cation = Naphthalene

By formula: C10H7- + H+ = C10H8

Quantity Value Units Method Reference Comment
Δr1649. ± 5.0kJ/molBranReed and Kass, 2000gas phase; B
Δr1649. ± 5.0kJ/molTDEqMeot-ner, Liebman, et al., 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B
Δr1648. ± 21.kJ/molCIDCLardin, Squires, et al., 2001gas phase; B
Quantity Value Units Method Reference Comment
Δr1613. ± 5.4kJ/molH-TSReed and Kass, 2000gas phase; B
Δr1606. ± 5.0kJ/molTDEqMeot-ner, Liebman, et al., 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B
Δr1613. ± 21.kJ/molH-TSLardin, Squires, et al., 2001gas phase; B

C6H7N+ + Naphthalene = (C6H7N+ • Naphthalene)

By formula: C6H7N+ + C10H8 = (C6H7N+ • C10H8)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr64.4kJ/molPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KN/AEl-Shall and Meot-Ner (Mautner), 1987gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
31.324.PHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; Entropy change calculated or estimated; M

C12H8+ + Naphthalene = (C12H8+ • Naphthalene)

By formula: C12H8+ + C10H8 = (C12H8+ • C10H8)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr52.7kJ/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr21.kJ/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

C12H9+ + Naphthalene = (C12H9+ • Naphthalene)

By formula: C12H9+ + C10H8 = (C12H9+ • C10H8)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr58.2kJ/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr27.kJ/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

2Hydrogen + Naphthalene = Naphthalene, 1,2,3,4-tetrahydro-

By formula: 2H2 + C10H8 = C10H12

Quantity Value Units Method Reference Comment
Δr-125.kJ/molEqkFrye and Weitkamp, 1969gas phase; ALS
Δr-120.5 ± 5.0kJ/molEqkWilson, Caflisch, et al., 1958gas phase; Reanalyzed by Cox and Pilcher, 1970, 2, Original value = -133.9 ± 5.0 kJ/mol; At 400 K; ALS

Benzobicyclo[2.2.0]hexa-2,5-diene = Naphthalene

By formula: C10H8 = C10H8

Quantity Value Units Method Reference Comment
Δr-248.5 ± 8.0kJ/molEqkDreeskamp, Kapahnke, et al., 1988liquid phase; solvent: Heptane; Isomerization; ALS
Δr-249.2 ± 8.0kJ/molCisoGrimme and Heinze, 1978liquid phase; solvent: Heptane; ALS

C10H8+ + Naphthalene = (C10H8+ • Naphthalene)

By formula: C10H8+ + C10H8 = (C10H8+ • C10H8)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr74.5kJ/molPHPMSMeot-Ner (Mautner), 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KPHPMSMeot-Ner (Mautner), 1980gas phase; M

C10H7- + Hydrogen cation = Naphthalene

By formula: C10H7- + H+ = C10H8

Quantity Value Units Method Reference Comment
Δr1655. ± 5.4kJ/molBranReed and Kass, 2000gas phase; B
Quantity Value Units Method Reference Comment
Δr1619. ± 5.9kJ/molH-TSReed and Kass, 2000gas phase; B

H4O4- + Naphthalene + 2Water = C10H12O4-

By formula: H4O4- + C10H8 + 2H2O = C10H12O4-

Quantity Value Units Method Reference Comment
Δr219. ± 9.6kJ/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

H2O3- + Naphthalene + Water = C10H10O3-

By formula: H2O3- + C10H8 + H2O = C10H10O3-

Quantity Value Units Method Reference Comment
Δr158. ± 9.6kJ/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

C10H9+ + Naphthalene = (C10H9+ • Naphthalene)

By formula: C10H9+ + C10H8 = (C10H9+ • C10H8)

Quantity Value Units Method Reference Comment
Δr59.0kJ/molPHPMSMeot-Ner (Mautner), 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KPHPMSMeot-Ner (Mautner), 1980gas phase; M

Oxygen anion + Naphthalene = C10H8O2-

By formula: O2- + C10H8 = C10H8O2-

Quantity Value Units Method Reference Comment
Δr92.5 ± 9.6kJ/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

Nitric oxide anion + Naphthalene = C10H8NO-

By formula: NO- + C10H8 = C10H8NO-

Quantity Value Units Method Reference Comment
Δr60.7 ± 9.6kJ/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

C10H8NO- + 2Naphthalene = C20H16NO-

By formula: C10H8NO- + 2C10H8 = C20H16NO-

Quantity Value Units Method Reference Comment
Δr99.6 ± 9.6kJ/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

5Hydrogen + Naphthalene = Naphthalene, decahydro-, cis-

By formula: 5H2 + C10H8 = C10H18

Quantity Value Units Method Reference Comment
Δr-318.kJ/molEqkFrye and Weitkamp, 1969gas phase; ALS

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Dorofeeva O.V., 1986
Dorofeeva O.V., On calculation of thermodynamic properties of polycyclic aromatic hydrocarbons, Thermochim. Acta, 1986, 102, 59-66. [all data]

Dorofeeva O.V., 1988
Dorofeeva O.V., Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons in the Gaseous Phase. Institute for High Temperatures, USSR Academy of Sciences, Preprint No.1-238 (in Russian), Moscow, 1988. [all data]

Barrow G.M., 1951
Barrow G.M., The thermodynamic properties of naphthalene, J. Am. Chem. Soc., 1951, 73, 573-575. [all data]

McClellan A.L., 1955
McClellan A.L., Vibrational assignment and thermodynamic properties of naphthalene, J. Chem. Phys., 1955, 23, 245-248. [all data]

Lielmezs J., 1981
Lielmezs J., Jr., Thermodynamic functions for naphthalene, Thermochim. Acta, 1981, 47, 287-308. [all data]

Chirico, Knipmeyer, et al., 1993
Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.; Steele, W.V., The thermodynamic properties to the temperature 700 K of naphthalene and of 2,7-dimethylnaphthalene, J. Chem. Thermodyn., 1993, 25, 1461-1494. [all data]

McCullough, Finke, et al., 1957
McCullough, J.P.; Finke, H.L.; Messerly, J.F.; Kincheloe, T.C.; Waddington, G., The low temperature thermodynamic properties of naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2,3,4-tetrahydronaphthalene, trans-decahydronaphthalene and cis-decahydronaphthalene, J. Phys. Chem., 1957, 61, 1105-1116. [all data]

Southard and Brickwedde, 1933
Southard, J.C.; Brickwedde, F.G., Low temperature specific heats. I. An improved calorimeter for use from 14 to 300 K. The heat capacity and entropy of naphthalene. J. Am. Chem. Soc., 1933, 4378-4384. [all data]

Pearce and Tanner, 1934
Pearce, J.N.; Tanner, W.B., The heat capacity and the free energy of formation of naphthalene, Proc. Iowa Acad. Sci., 1934, 41, 123-126. [all data]

Huffman, Parks, et al., 1930
Huffman, H.M.; Parks, G.S.; Daniels, A.C., Thermal data on organic compounds. VII. The heat capacities, entropies and free energies of twelve aromatic hydrocarbons, J. Am. Chem. Soc., 1930, 52, 1547-1558. [all data]

David, 1964
David, D.J., Determination of specific heat and heat of fusion by differential thermal analysis. Study of theory and operating parameters, Anal. Chem., 1964, 36, 2162-2166. [all data]

Rastogi and Bassi, 1964
Rastogi, R.P.; Bassi, P.S., Mechanism of eutectic crystallization, J. Phys. Chem., 1964, 68, 2398-2406. [all data]

Ueberreiter and Orthmann, 1950
Ueberreiter, K.; Orthmann, H.-J., Specifische Wärme, spezifisches Volumen, Temperatur- und Wärme-leittähigkeit einiger disubstituierter Benzole und polycyclischer Systeme, Z. Natursforsch. 5a, 1950, 101-108. [all data]

Eibert, 1944
Eibert, J., Thesis Washington University (St. Louis), 1944. [all data]

Schmidt, 1941
Schmidt, W.R., Thesis Washington University (St. Louis), 1941. [all data]

Hicks, 1938
Hicks, J.F.G., Jr., A low temperature calorimeter. The heat capacity and entropy of thallium from 14 to 300°K. Low temperature studies. No. 3, J. Am. Chem. Soc., 1938, 60, 1000-1004. [all data]

Spaght, Thomas, et al., 1932
Spaght, M.E.; Thomas, S.B.; Parks, G.S., Some heat capacity data on organic compounds obtained with a radiation calorimeter, J. Phys. Chem., 1932, 36, 882-888. [all data]

Andrews, Lynn, et al., 1926
Andrews, D.H.; Lynn, G.; Johnston, J., The heat capacities and heat of crystallization of some isomeric aromatic compounds, J. Am. Chem. Soc., 1926, 48, 1274-1287. [all data]

Tsonopoulos and Ambrose, 1995
Tsonopoulos, C.; Ambrose, D., Vapor-Liquid Critical Properties of Elements and Compounds. 3. Aromatic Hydrocarbons, J. Chem. Eng. Data, 1995, 40, 547-558. [all data]

Cheng, 1963
Cheng, D.C.H., Critical temperatures and volumes of some binary systems, Chem. Eng. Sci., 1963, 18, 715. [all data]

Chirico, Knipmeyer, et al., 1993, 2
Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.; Steele, W.V., The thermodynamic properties to the temperature 700 K of naphthalene and of 2,7-dimethylnaphthalene, J. Chem. Thermodyn., 1993, 25, 1461-94. [all data]

Schroeer, 1941
Schroeer, E., Critical State VI. Vapor-pressure Curve of Naphthalene Up To the Critical Point, Z. Phys. Chem., Abt. B, 1941, 49, 271-8. [all data]

Zhuravlev, 1937
Zhuravlev, D.I., Crit. Temp. and Orthobaric Density of Diphenyl Ether and Napphthalene naphthalene, Zh. Fiz. Khim., 1937, 9, 875. [all data]

Zhao, Unhannanant, et al., 2008
Zhao, Hui; Unhannanant, Patamaporn; Hanshaw, William; Chickos, James S., Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid-Vapor Pressure Isotope Effects, J. Chem. Eng. Data, 2008, 53, 7, 1545-1556, https://doi.org/10.1021/je800091s . [all data]

Haftka, Parsons, et al., 2006
Haftka, Joris J.H.; Parsons, John R.; Govers, Harrie A.J., Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography, Journal of Chromatography A, 2006, 1135, 1, 91-100, https://doi.org/10.1016/j.chroma.2006.09.050 . [all data]

Chickos, Hesse, et al., 1998
Chickos, James; Hesse, Donald; Hosseini, Sarah; Nichols, Gary; Webb, Paul, Sublimation enthalpies at 298.15K using correlation gas chromatography and differential scanning calorimetry measurements, Thermochimica Acta, 1998, 313, 2, 101-110, https://doi.org/10.1016/S0040-6031(97)00432-2 . [all data]

Chickos, Hosseini, et al., 1995
Chickos, James S.; Hosseini, Sarah; Hesse, Donald G., Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times, Thermochimica Acta, 1995, 249, 41-62, https://doi.org/10.1016/0040-6031(95)90670-3 . [all data]

Torres-Gomez, Barreiro-Rodriguez, et al., 1988
Torres-Gomez, L.A.; Barreiro-Rodriguez, G.; Galarza-Mondragon, A., A new method for the measurement of enthalpies of sublimation using differential scanning calorimetry, Thermochim. Acta, 1988, 124, 229-233. [all data]

Lei, Chankalal, et al., 2002
Lei, Ying Duan; Chankalal, Raymond; Chan, Anita; Wania, Frank, Supercooled Liquid Vapor Pressures of the Polycyclic Aromatic Hydrocarbons, J. Chem. Eng. Data, 2002, 47, 4, 801-806, https://doi.org/10.1021/je0155148 . [all data]

Boller and Wiedemann, 1998
Boller, A.; Wiedemann, H.G., Journal of Thermal Analysis and Calorimetry, 1998, 53, 2, 431-439, https://doi.org/10.1023/A:1010133106907 . [all data]

Back, Grzyll, et al., 1996
Back, Dwight D.; Grzyll, Lawrence R.; Corrigan, Mary, DSC enthalpy of vaporization measurements of high temperature two-phase working fluids, Thermochimica Acta, 1996, 272, 53-63, https://doi.org/10.1016/0040-6031(95)02615-0 . [all data]

Lee and Holder, 1993
Lee, Chang Ha; Holder, Gerald D., Vapor-liquid equilibria in the systems toluene/naphthalene and cyclohexane/naphthalene, J. Chem. Eng. Data, 1993, 38, 2, 320-323, https://doi.org/10.1021/je00010a034 . [all data]

Ambrose, Ewing, et al., 1990
Ambrose, D.; Ewing, M.B.; Ghiassee, N.B.; Sanchez Ochoa, J.C., The ebulliometric method of vapour-pressure measurement: vapour pressures of benzene, hexafluorobenzene, and naphthalene, The Journal of Chemical Thermodynamics, 1990, 22, 6, 589-605, https://doi.org/10.1016/0021-9614(90)90151-F . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

de Kruif, Kuipers, et al., 1981
de Kruif, C.G.; Kuipers, T.; van Miltenburg, J.C.; Schaake, R.C.F.; Stevens, G., The vapour pressure of solid and liquid naphthalene, The Journal of Chemical Thermodynamics, 1981, 13, 11, 1081-1086, https://doi.org/10.1016/0021-9614(81)90006-9 . [all data]

Wilson, Johnston, et al., 1981
Wilson, Grant M.; Johnston, Robert H.; Hwang, Shuen-Cheng.; Tsonopoulos, Constantine., Volatility of coal liquids at high temperatures and pressures, Ind. Eng. Chem. Proc. Des. Dev., 1981, 20, 1, 94-104, https://doi.org/10.1021/i200012a015 . [all data]

Fowler, Trump, et al., 1968
Fowler, Lewis.; Trump, Walter N.; Vogler, Carl E., Vapor pressure of naphthalene. Measurements between 40.deg. and 180.deg., J. Chem. Eng. Data, 1968, 13, 2, 209-210, https://doi.org/10.1021/je60037a020 . [all data]

Camin and Rossini, 1955
Camin, David L.; Rossini, Frederick D., Physical Properties of Fourteen API Research Hydrocarbons, C 9 to C 15, J. Phys. Chem., 1955, 59, 11, 1173-1179, https://doi.org/10.1021/j150533a014 . [all data]

Barrow and McClellan, 1951
Barrow, Gordon M.; McClellan, A.L., The Thermodynamic Properties of Naphthalene, J. Am. Chem. Soc., 1951, 73, 2, 573-575, https://doi.org/10.1021/ja01146a020 . [all data]

Cramer, 1943
Cramer, K.S.N., Chem. Zentr. II, 1943, 2234. [all data]

Mortimer and Murphy, 1923
Mortimer, F. Spencer.; Murphy, Ray v., The Vapor Pressures of Some Substances Found in Coal Tar., Ind. Eng. Chem., 1923, 15, 11, 1140-1142, https://doi.org/10.1021/ie50167a012 . [all data]

NELSON and SENSEMAN, 1922
NELSON, O.A.; SENSEMAN, C.E., Vapor Pressure Determinations on Naphthalene, Anthracene, Phecanthrene, and Anthraquinone between Their Melting and Boiling Points, J. Ind. Eng. Chem., 1922, 14, 1, 58-62, https://doi.org/10.1021/ie50145a028 . [all data]

Grayson and Fosbraey, 2006
Grayson, B. Terence; Fosbraey, Lynda A., Determination of the vapour pressure of pesticides, Pestic. Sci., 2006, 13, 3, 269-278, https://doi.org/10.1002/ps.2780130308 . [all data]

McEachern and Sandoval, 2001
McEachern, D.M.; Sandoval, O., A molecular flow evaporation apparatus for measuring vapour pressures and heats of sublimation of organic compounds, J. Phys. E: Sci. Instrum., 2001, 6, 2, 155-161, https://doi.org/10.1088/0022-3735/6/2/026 . [all data]

Nass, Lenoir, et al., 1995
Nass, Karen; Lenoir, Dieter; Kettrup, Antonius, Calculation of the Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons by an Incremental Procedure, Angew. Chem. Int. Ed. Engl., 1995, 34, 16, 1735-1736, https://doi.org/10.1002/anie.199517351 . [all data]

Wania, Shiu, et al., 1994
Wania, Frank; Shiu, Wan-Ying; Mackay, Donald, Measurement of the Vapor Pressure of Several Low-Volatility Organochlorine Chemicals at Low Temperatures with a Gas Saturation Method, J. Chem. Eng. Data, 1994, 39, 3, 572-577, https://doi.org/10.1021/je00015a039 . [all data]

Khudyakov, 1988
Khudyakov, V.L., Russ. J. Phys. Chem., 1988, 62, 1743. [all data]

SATO, INOMATA, et al., 1986
SATO, NOBUYUKI; INOMATA, HIROSHI; ARAI, KUNIO; SAITO, SHOZABURO, Measurement of vapor pressures for coal-related aromatic compounds by gas saturation method., J. Chem. Eng. Japan / JCEJ, 1986, 19, 2, 145-147, https://doi.org/10.1252/jcej.19.145 . [all data]

Glukhova, Arkhangelova, et al., 1985
Glukhova, O.T.; Arkhangelova, N.M.; Teplitsky, A.B.; Sukhodub, L.F.; Yanson, I.K.; Kaminski, Miron, The low-temperature quartz resonator method for determination of the enthalpy of sublimation, Thermochimica Acta, 1985, 95, 1, 133-138, https://doi.org/10.1016/0040-6031(85)80041-1 . [all data]

Matsubara and Kuwamoto, 1985
Matsubara, Norio; Kuwamoto, Tooru, Vapor pressure measurements in carrier gas containing ligand vapor using the transpiration technique, Thermochimica Acta, 1985, 83, 2, 193-202, https://doi.org/10.1016/0040-6031(85)87003-9 . [all data]

Sonnefeld, Zoller, et al., 1983
Sonnefeld, W.J.; Zoller, W.H.; May, W.E., Dynamic coupled-column liquid-chromatographic determination of ambient-temperature vapor pressures of polynuclear aromatic hydrocarbons, Anal. Chem., 1983, 55, 2, 275-280, https://doi.org/10.1021/ac00253a022 . [all data]

Colomina, Jimenez, et al., 1982
Colomina, M.; Jimenez, P.; Turrion, C., Vapour pressures and enthalpies of sublimation of naphthalene and benzoic acid, J. Chem. Thermodyn., 1982, 14, 779-784. [all data]

Kruif, 1980
Kruif, C.G., Enthalpies of sublimation and vapour pressures of 11 polycyclic hydrocarbons, J. Chem. Thermodyn., 1980, 12, 243-248. [all data]

Murray, Cavell, et al., 1980
Murray, J.P.; Cavell, K.J.; Hill, J.O., A DSC study of benzoic acid: a suggested calibrant compound, Thermochimica Acta, 1980, 36, 1, 97-101, https://doi.org/10.1016/0040-6031(80)80114-6 . [all data]

Macknick and Prausnitz, 1979
Macknick, A. Brian; Prausnitz, John M., Vapor pressures of high-molecular-weight hydrocarbons, J. Chem. Eng. Data, 1979, 24, 3, 175-178, https://doi.org/10.1021/je60082a012 . [all data]

De Kruif and Van Ginkel, 1977
De Kruif, C.G.; Van Ginkel, C.H.D., Torsion-weighing effusion vapour-pressure measurements on organic compounds, The Journal of Chemical Thermodynamics, 1977, 9, 8, 725-730, https://doi.org/10.1016/0021-9614(77)90015-5 . [all data]

Ambrose, Lawrenson, et al., 1975
Ambrose, D.; Lawrenson, I.J.; Sprake, C.H.S., The vapour pressure of naphthalene, The Journal of Chemical Thermodynamics, 1975, 7, 12, 1173-1176, https://doi.org/10.1016/0021-9614(75)90038-5 . [all data]

Chickos, 1975
Chickos, James Speros, A simple equilibrium method for determining heats of sublimation, J. Chem. Educ., 1975, 52, 2, 134-39, https://doi.org/10.1021/ed052p134 . [all data]

McEachern, Sandoval, et al., 1975
McEachern, D.M.; Sandoval, O.; Iniguez, J.C., Vapor pressures, derived enthalpies of sublimation, enthalpies of fusion, and resonance energies of acridine and phenazine, J. Chem. Thermodyn., 1975, 7, 299-306. [all data]

Radchenko and Kitaigorodskii, 1974
Radchenko, L.G.; Kitaigorodskii, A.I., The vapour pressures and heats of sublimation of naphthalene, biphenyl, octafluoronaphthalene, decafluorobiphenyl, acenaphthene and α-nitronaphthalene, Russ. J. Phys. Chem. (Engl. Transl.), 1974, 48, 1595. [all data]

Radchenko, 1971
Radchenko, L.G., Zh. Fiz. Khim., 1971, 45, 5, 1310. [all data]

Karyakin, Rabinovich, et al., 1968
Karyakin, N.V.; Rabinovich, I.B.; Pakhomov, L.G., Heats of sublimation of naphthalene and its monosubstituted β-derivatives, Russ. J. Phys. Chem. (Engl. Transl.), 1968, 42, 954. [all data]

Miller, 1963
Miller, George A., Vapor Pressure of Naphthalene. Thermodynamic Consistency with Proposed Frequency Assignments., J. Chem. Eng. Data, 1963, 8, 1, 69-72, https://doi.org/10.1021/je60016a019 . [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press Inc., London, 1970, 643. [all data]

Aihara, 1959
Aihara, A., Estimation of the energy of hydrogen bonds formed in crystals. I. Sublimation pressures of some organic molecular crystals and the additivity of lattice energy, Bull. Chem. Soc. Jpn., 1959, 32, 1242. [all data]

Aihara, 1959, 2
Aihara, Ariyuki, Estimation of the Energy of Hydrogen Bonds Formed in Crystals. I. Sublimation Pressures of Some Organic Molecular Crystals and the Additivity of Lattice Energy, Bull. Chem. Soc. Jpn., 1959, 32, 11, 1242-1248, https://doi.org/10.1246/bcsj.32.1242 . [all data]

Hoyer and Peperle, 1958
Hoyer, H.; Peperle, W., Z. Elektrochem., 1958, 62, 61. [all data]

Sklyarenko, Markin, et al., 1958
Sklyarenko, S.I.; Markin, B.I.; Belyaeva, L.B., Zh. Fiz. Khim., 1958, 32, 1916. [all data]

Sherwood and Bryant, 1957
Sherwood, T.K.; Bryant, J.H., Jr., Can. J. Chem. Eng., 1957, 35, 51. [all data]

Bradley and Cleasby, 1953
Bradley, R.S.; Cleasby, T.G., 346. The vapour pressure and lattice energy of hydrogen-bonded crystals. Part I. Oxamide, oxamic acid, and rubeanic acid, J. Chem. Soc., 1953, 1681, https://doi.org/10.1039/jr9530001681 . [all data]

Jones, 1960
Jones, A.H., Sublimation Pressure Data for Organic Compounds., J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019 . [all data]

Sears and Hopke, 1954
Sears, G.W.; Hopke, E.R., The Vapor Pressure of Naphthalene, J. Am. Chem. Soc., 1954, 76, 7, 2026-2026, https://doi.org/10.1021/ja01636a099 . [all data]

Bradley and Cleasby, 1953, 2
Bradley, R.S.; Cleasby, T.G., The vapour pressure and lattice energy of some aromatic ring compounds, J. Am. Chem. Soc., 1953, 1690-16. [all data]

Zibberman-Granovskaya, 1940
Zibberman-Granovskaya, A.A., Russ. J. Phys. Chem., 1940, 14, 759. [all data]

Andrews, 1925
Andrews, Mary R., Vapor Pressure of Naphthalene at Low Temperatures, J. Phys. Chem., 1925, 30, 11, 1497-1500, https://doi.org/10.1021/j150269a005 . [all data]

Swan and Mack, 1925
Swan, Thomas H.; Mack, Edward, VAPOR PRESSURES OF ORGANIC CRYSTALS BY AN EFFUSION METHOD, J. Am. Chem. Soc., 1925, 47, 8, 2112-2116, https://doi.org/10.1021/ja01685a005 . [all data]

Mastrangelo, 1957
Mastrangelo, S.V.R., Adiabatic calorimeter for determination of cryoscopic data, Anal. Chem., 1957, 29(5), 841-845. [all data]

Sharma, Gupta, et al., 2008
Sharma, B.L.; Gupta, S.; Tandon, S.; Kant, R., Physico-mechanical properties of naphthalene--acenaphthene eutectic system by different modes of solidification, Materials Chemistry and Physics, 2008, 111, 2-3, 423-430, https://doi.org/10.1016/j.matchemphys.2008.04.049 . [all data]

Hafsaoui and Mahmoud, 2007
Hafsaoui, S.L.; Mahmoud, R., Solid-liquid equilibria of binary systems containing n-tetracosane with naphthalene or dibenzofuran, J Therm Anal Calorim, 2007, 88, 2, 565-570, https://doi.org/10.1007/s10973-006-8084-2 . [all data]

Khimeche and Dahmani, 2006
Khimeche, Kamel; Dahmani, Abdallah, Solid-Liquid Equilibria of Naphthalene + Alkanediamine Mixtures, J. Chem. Eng. Data, 2006, 51, 2, 382-385, https://doi.org/10.1021/je0502851 . [all data]

Khimeche and Dahmani, 2006, 2
Khimeche, K.; Dahmani, A., Determination by DSC of solid--liquid diagrams for polyaromatic -- 4,4'diaminodiphenylmethane binary systems, J Therm Anal Calorim, 2006, 84, 1, 47-52, https://doi.org/10.1007/s10973-005-7167-9 . [all data]

Chirico, Knipmeyer, et al., 2002
Chirico, R.D.; Knipmeyer, S.E.; Steele, W.V., Heat capacities, enthalpy increments, and derived thermodynamic functions for naphthalene between the temperatures 5K and 440K, The Journal of Chemical Thermodynamics, 2002, 34, 11, 1873-1884, https://doi.org/10.1016/S0021-9614(02)00262-8 . [all data]

Acree, 1991
Acree, William E., Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation, Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H . [all data]

Syunyaev, Tumanyan, et al., 1984
Syunyaev, Z.I.; Tumanyan, B.P.; Kolesnikov, S.I.; Zhokhova, N.I., Some anomalies in melting points of binary mixtures of solid hydrocarbons, Zhur. Prikl. Khim. (Leningrad), 1984, 57, 666-669. [all data]

Andon and Connett, 1980
Andon, R.J.L.; Connett, J.E., Calibrants for thermal analysis. Measurement of their enthalpies of fusion by adiabatic calorimetry, Thermochim. Acta, 1980, 42, 241-247. [all data]

Radomska and Radomski, 1980
Radomska, M.; Radomski, R., Calorimetric studies of binary systems of 1,3,5-trinitrobenzene with naphthalene, anthracene, and carbazole. I. Phase transitions and heat capacities of the pure components and charge-transfer complexes, Thermochim. Acta, 1980, 40, 405-414. [all data]

Reed and Kass, 2000
Reed, D.R.; Kass, S.R., Experimental determination of the alpha and beta C-H bond dissociation energies in naphthalene, J. Mass Spectrom., 2000, 35, 4, 534-539, https://doi.org/10.1002/(SICI)1096-9888(200004)35:4<534::AID-JMS964>3.0.CO;2-T . [all data]

Meot-ner, Liebman, et al., 1988
Meot-ner, M.; Liebman, J.F.; Kafafi, S.A., Ionic Probes of Aromaticity in Annelated Rings, J. Am. Chem. Soc., 1988, 110, 18, 5937, https://doi.org/10.1021/ja00226a001 . [all data]

Kiefer, Zhang, et al., 1997
Kiefer, J.H.; Zhang, Q.; Kern, R.D.; Yao, J.; Jursic, B., Pyrolysis of Aromatic Azines: Pyrazine, Pyrimidine, and Pyridine, J. Phys. Chem. A, 1997, 101, 38, 7061, https://doi.org/10.1021/jp970211z . [all data]

Lardin, Squires, et al., 2001
Lardin, H.A.; Squires, R.R.; Wenthold, P.G., Determination of the electron affinities of alpha- and beta- naphthyl radicals using the kinetic method with full entropy analysis. The C-H bond dissociation energies of naphthalene, J. Mass Spectrom., 2001, 36, 6, 607-615, https://doi.org/10.1002/jms.159 . [all data]

El-Shall and Meot-Ner (Mautner), 1987
El-Shall, M.S.; Meot-Ner (Mautner), M., Ionic Charge Transfer Complexes. 3. Delocalised pi Systems as Electron Acceptors and Donors, J. Phys. Chem., 1987, 91, 5, 1088, https://doi.org/10.1021/j100289a017 . [all data]

Meot-Ner (Mautner), 1980
Meot-Ner (Mautner), M., Dimer Cations of Polycyclic Aromatics: Experimental Bonding Energies and Resonance Stabilization, J. Phys. Chem., 1980, 84, 21, 2724, https://doi.org/10.1021/j100458a012 . [all data]

Frye and Weitkamp, 1969
Frye, C.G.; Weitkamp, A.W., Equilibrium hydrogenations of multi-ring aromatics, J. Chem. Eng. Data, 1969, 14, 372-376. [all data]

Wilson, Caflisch, et al., 1958
Wilson, T.P.; Caflisch, E.G.; Hurley, G.F., The naphthalene-tetralin-hydrogen equilibrium at elevated temperature and pressure, J. Phys. Chem., 1958, 62, 1059. [all data]

Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Dreeskamp, Kapahnke, et al., 1988
Dreeskamp, H.; Kapahnke, P.; Tochtermann, W., Photo valence isomerization of sterically strained aromatic hydrocarbons: 8,9-dicarbethoxy[6]paracyclophane, Radiat. Phys. Chem., 1988, 32, 537-539. [all data]

Grimme and Heinze, 1978
Grimme, W.; Heinze, U., Kinetics and enthalpy of isomerization of benzobicyclo[2.2.0]hexa-2,5-diene, Chem. Ber., 1978, 111, 2563-2570. [all data]

Le Barbu, Schiedt, et al., 2002
Le Barbu, K.; Schiedt, J.; Weinkauf, R.; Schlag, E.W.; Nilles, J.M.; Xu, S.J.; Thomas, O.C.; Bowen, K.H., Microsolvation of small anions by aromatic molecules: An exploratory study, J. Chem. Phys., 2002, 116, 22, 9663-9671, https://doi.org/10.1063/1.1475750 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References