Benzene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas82.9 ± 0.9kJ/molReviewRoux, Temprado, et al., 2008There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB
Δfgas82.8kJ/molN/AGood and Smith, 1969Value computed using ΔfHliquid° value of 49.0±0.5 kj/mol from Good and Smith, 1969 and ΔvapH° value of 33.9 kj/mol from Prosen, Gilmont, et al., 1945.; DRB
Δfgas82.93 ± 0.50kJ/molCcbProsen, Gilmont, et al., 1945Hf by Prosen, Johnson, et al., 1946; ALS
Δfgas79.9kJ/molN/ALandrieu, Baylocq, et al., 1929Value computed using ΔfHliquid° value of 46.0 kj/mol from Landrieu, Baylocq, et al., 1929 and ΔvapH° value of 33.9 kj/mol from Prosen, Gilmont, et al., 1945.; DRB

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
33.2750.Thermodynamics Research Center, 1997GT
35.11100.
41.94150.
53.17200.
74.55273.15
82.44298.15
83.02300.
113.52400.
139.35500.
160.09600.
176.78700.
190.45800.
201.82900.
211.411000.
219.561100.
226.521200.
232.491300.
237.651400.
242.111500.
250.911750.
257.262000.
261.952250.
265.502500.
268.232750.
270.373000.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
93.32 ± 0.06333.15Todd S.S., 1978Please also see Montgomery J.B., 1942, Pitzer K.S., 1943, Scott D.W., 1947.; GT
95.81341.60
97.99 ± 0.06348.15
103.98 ± 0.06368.15
105.02370.
104.77371.20
108.8 ± 1.3388.
110.88390.
110.5 ± 1.3393.
113.93402.30
114.29 ± 0.07403.15
115.48410.
117.6 ± 1.3417.
118.8 ± 1.3428.
123.39436.15
123.93 ± 0.07438.15
126.8 ± 1.3463.
132.42471.10
132.94 ± 0.08473.15
131.4 ± 1.3481.
139.47 ± 0.08500.15
145.59 ± 0.09527.15

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid49. ± 0.9kJ/molReviewRoux, Temprado, et al., 2008There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB
Δfliquid48.95 ± 0.54kJ/molCcbGood and Smith, 1969ALS
Δfliquid49.04 ± 0.50kJ/molCcbProsen, Gilmont, et al., 1945Hf by Prosen, Johnson, et al., 1946; ALS
Δfliquid46.0kJ/molCcbLandrieu, Baylocq, et al., 1929ALS
Quantity Value Units Method Reference Comment
Δcliquid-3267. ± 20.kJ/molAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
liquid173.26J/mol*KN/AOliver, Eaton, et al., 1948DH
liquid175.3J/mol*KN/AHuffman, Parks, et al., 1930Extrapolation below 90 K, 47.49 J/mol*K.; DH
Quantity Value Units Method Reference Comment
solid,1 bar45.56J/mol*KN/AAhlberg, Blanchard, et al., 1937DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
135.69298.15Grolier, Roux-Desgranges, et al., 1993DH
135.9298.5Czarnota, 1991p = 0.1 MPa. Cp values given for the pressure range 0.1 to 68.1 MPa.; DH
135.62298.15Lainez, Rodrigo, et al., 1989DH
134.63298.15Shiohama, Ogawa, et al., 1988DH
135.75298.15Grolier, Roux-Desgranges, et al., 1987DH
134.61293.15Kalali, Kohler, et al., 1987T = 293.15, 313.15 K.; DH
135.707298.15Tanaka, 1987DH
139.9322.05Naziev, Bashirov, et al., 1986T = 322.05, 351.15 K. p = 0.1 MPa. Unsmoothed experimental datum given as 1.7915 kJ/kg*K.; DH
137.4303.15Reddy, 1986T = 303.15, 313.15 K.; DH
136.06298.15Ogawa and Murakami, 1985DH
135.718298.15Tanaka, 1985DH
136.24298.15Gorbunova, Simonov, et al., 1983T = 283.78 to 348.47 K. Cp = 1.3943 - 5.857x10-4T + 5.89x10-6T2 kJ/kg*K. Cp value calculated from equation.; DH
136.5300.Gorbunova, Grigoriev, et al., 1982T = 280 to 353 K. Data also given by equation.; DH
135.7298.15Grolier, Inglese, et al., 1982T = 298.15 K.; DH
135.74298.15Tanaka, 1982Temperatures 293.15, 298.15, 303.15 K.; DH
135.60298.15Wilhelm, Faradjzadeh, et al., 1982DH
133.6293.15Atalla, El-Sharkawy, et al., 1981DH
135.90298.15Vesely, Zabransky, et al., 1979DH
135.61298.15Grolier, Wilhelm, et al., 1978DH
135.90298.15Vesely, Svoboda, et al., 1977T = 298 to 318 K.; DH
135.60298.15Wilhelm, Grolier, et al., 1977DH
135.76298.15Fortier, Benson, et al., 1976DH
135.760298.15Fortier and Benson, 1976DH
135.7298.15Rajagopal and Subrahmanyam, 1974T = 298.15 to 323.15 K.; DH
134.3298.Deshpande and Bhatagadde, 1971T = 298 to 318 K.; DH
135.9298.15Hyder Khan and Subrahmanyam, 1971T = 298; 313 K.; DH
135.9298.Subrahmanyam and Khan, 1969DH
135.4298.Recko, 1968T = 24 to 40°C, equation only.; DH
130.298.Pacor, 1967DH
134.6293.Rastorguev and Ganiev, 1967T = 293 to 353 K.; DH
135.30300.Findenegg, Gruber, et al., 1965DH
134.98298.Rabinovich and Nikolaev, 1962T = 10 to 35°C.; DH
135.1316.Swietoslawski and Zielenkiewicz, 1960Mean value 21 to 66°C.; DH
136.4303.Duff and Everett, 1956T = 303 to 353 K.; DH
135.23298.Staveley, Tupman, et al., 1955T = 288 to 347 K.; DH
31.8293.Sieg, Crtzen, et al., 1951DH
136.06298.15Oliver, Eaton, et al., 1948T = 13 to 337 K.; DH
119.295.Tschamler, 1948DH
133.5298.Kurbatov, 1947T = 9 to 80°C, mean Cp, five temperatures.; DH
136.0298.1Zhdanov, 1941T = 8 to 46°C.; DH
135.44298.2Burlew, 1940T = 281 to 353 K.; DH
131.4287.8Kolosovskii and Udovenko, 1934DH
131.4287.8de Kolossowsky and Udowenko, 1933DH
131.4298.15Ferguson and Miller, 1933T = 293 to 323 K. Data calculated from equation.; DH
135.1298.1Richards and Wallace, 1932T = 293 to 333 K.; DH
143.57323.15Fiock, Ginnings, et al., 1931T = 50 to 110°C.; DH
135.1300.0Huffman, Parks, et al., 1930T = 93 to 300 K. Value is unsmoothed experimental datum.; DH
132.2298.Andrews, Lynn, et al., 1926T = -18 to 110°C.; DH
133.1293.2Williams and Daniels, 1925T = 20 to 60°C.; DH
133.9303.Willams and Daniels, 1924T = 303 to 333 K. Equation only.; DH
137.2298.Dejardin, 1919T = 24 to 50°C.; DH
133.5298.von Reis, 1881T = 292 to 364 K.; DH

Constant pressure heat capacity of solid

Cp,solid (J/mol*K) Temperature (K) Reference Comment
47.8690.Ahlberg, Blanchard, et al., 1937T = 4 to 93 K.; DH
97.9223.9Aoyama and Kanda, 1935T = 82 to 224 K. Value is unsmoothed experimental datum.; DH
118.4273.Maass and Walbauer, 1925T = 93 to 273 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil353.3 ± 0.1KAVGN/AAverage of 147 out of 183 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus278.64 ± 0.08KAVGN/AAverage of 57 out of 69 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple278.5 ± 0.6KAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Tc562.0 ± 0.8KAVGN/AAverage of 36 out of 41 values; Individual data points
Quantity Value Units Method Reference Comment
Pc48.9 ± 0.4barAVGN/AAverage of 24 out of 26 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.25 ± 0.03l/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
ρc3.9 ± 0.2mol/lAVGN/AAverage of 12 values; Individual data points
Quantity Value Units Method Reference Comment
Δvap33.9 ± 0.1kJ/molAVGN/AAverage of 10 out of 11 values; Individual data points
Quantity Value Units Method Reference Comment
Δsub44.4kJ/molTE,MEKruif, 1980Based on data from 183. to 197. K.; AC

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
30.72353.3N/AMajer and Svoboda, 1985 
33.2320.N/ALubomska, Banas, et al., 2002Based on data from 305. to 345. K.; AC
35.6258. to 313.GCLiu and Dickhut, 1994AC
33.5311.EBAmbrose, Ewing, et al., 1990Based on data from 296. to 377. K.; AC
33.4307.CDong, Lin, et al., 1988AC
33.1314.CDong, Lin, et al., 1988AC
32.4324.CDong, Lin, et al., 1988AC
31.9332.CDong, Lin, et al., 1988AC
31.4344.CDong, Lin, et al., 1988AC
30.6353.CDong, Lin, et al., 1988AC
34.4294.AStephenson and Malanowski, 1987Based on data from 279. to 377. K.; AC
31.5368.AStephenson and Malanowski, 1987Based on data from 353. to 422. K.; AC
30.2435.AStephenson and Malanowski, 1987Based on data from 420. to 502. K.; AC
30.3516.AStephenson and Malanowski, 1987Based on data from 501. to 562. K.; AC
30.8352.N/ANatarajan, 1983AC
30.5361.N/ANatarajan, 1983AC
30.2366.N/ANatarajan, 1983AC
35.3343.N/ATsonopoulos and Wilson, 1983Based on data from 313. to 373. K.; AC
31.350.N/ARao and Viswanath, 1977AC
33.0 ± 0.1313.CSvoboda, Veselý, et al., 1973AC
32.2 ± 0.1328.CSvoboda, Veselý, et al., 1973AC
31.8 ± 0.1333.CSvoboda, Veselý, et al., 1973AC
31.4 ± 0.1343.CSvoboda, Veselý, et al., 1973AC
30.9 ± 0.1353.CSvoboda, Veselý, et al., 1973AC
32.6 ± 0.4313.DSCMita, Imai, et al., 1971AC
32.5 ± 0.5328.DSCMita, Imai, et al., 1971AC
31.6 ± 0.4345.DSCMita, Imai, et al., 1971AC
34.1299.N/AForziati, Norris, et al., 1949Based on data from 284. to 354. K.; AC
34.1293.N/AYarym-Agaev, Fedos'ev, et al., 1949AC
34.1297.N/AThomson, 1946Based on data from 282. to 354. K.; AC
31.2294.N/AScott and Brickwedde, 1945AC
34.1303.MMWillingham, Taylor, et al., 1945Based on data from 288. to 354. K.; AC
33.4313.EBSmith, 1941Based on data from 298. to 373. K.; AC
34.5288.N/AStuckey and Saylor, 1940Based on data from 273. to 348. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 293. to 469.
A (kJ/mol) 47.41
α 0.1231
β 0.3602
Tc (K) 562.1
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
333.4 to 373.54.725831660.652-1.461Eon, Pommier, et al., 1971Coefficents calculated by NIST from author's data.
297.9 to 318.0.1459139.165-261.236Deshpande and Pandya, 1967Coefficents calculated by NIST from author's data.
421.56 to 554.84.603621701.07320.806Kalafati, Rasskazov, et al., 1967Coefficents calculated by NIST from author's data.
287.70 to 354.074.018141203.835-53.226Williamham, Taylor, et al., 1945 

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
41.7258. to 273.N/ALiu and Dickhut, 1994AC
45.2264.AStephenson and Malanowski, 1987Based on data from 223. to 279. K. See also Ha, Morrison, et al., 1976.; AC
45.1278.N/AHessler, 1984AC
53.9 ± 0.8193.N/ADe Kruif and Van Ginkel, 1977AC
49.4 ± 0.4193.N/ADe Kruif and Van Ginkel, 1977AC
45.6279.MMJackowski, 1974Based on data from 221. to 268. K.; AC
44.1261.N/AJones, 1960AC
43.1229.N/AJones, 1960AC
44.6279.N/AMilazzo, 1956AC
46.6282.AStull, 1947Based on data from 263. to 270. K.; AC
38.303.VWolf and Weghofer, 1938ALS
44.6273.N/Ade Boer, 1936See also Jackowski, 1974.; AC
43.3226.AMündel, 1913Based on data from 214. to 238. K.; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Method Reference Comment
9.8663278.69N/AOliver, Eaton, et al., 1948DH
9.916278.65N/AZiegler and Andrews, 1942DH
9.87278.7CDomalski and Hearing, 1996See also Andrews, Lynn, et al., 1926 and Ziegler and Andrews, 1942.; AC
9.300279.1N/ASmith, 1979DH
8.950278.8N/APacor, 1967DH
9.937278.6N/ATschamler, 1948DH
9.803278.6N/AHuffman, Parks, et al., 1930DH
9.875278.55N/AAndrews, Lynn, et al., 1926DH
10.000278.64N/AMaass and Walbauer, 1925DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
35.40278.69Oliver, Eaton, et al., 1948DH
35.59278.65Ziegler and Andrews, 1942DH
33.3279.1Smith, 1979DH
32.1278.8Pacor, 1967DH
35.19278.6Huffman, Parks, et al., 1930DH
35.5278.55Andrews, Lynn, et al., 1926DH
35.9278.64Maass and Walbauer, 1925DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Chlorine anion + Benzene = (Chlorine anion • Benzene)

By formula: Cl- + C6H6 = (Cl- • C6H6)

Quantity Value Units Method Reference Comment
Δr25.1 ± 1.9kJ/molN/ATschurl, Ueberfluss, et al., 2007gas phase; B
Δr39. ± 8.4kJ/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr41.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M
Δr36.kJ/molPHPMSPaul and Kebarle, 1991gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M
Δr43.5kJ/molPHPMSSunner, Nishizawa, et al., 1981gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr71.J/mol*KN/APaul and Kebarle, 1991gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M
Δr71.5J/mol*KN/ALarson and McMahon, 1984, 2gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M
Δr92.J/mol*KN/ASunner, Nishizawa, et al., 1981gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr17. ± 11.kJ/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B
Δr16. ± 6.7kJ/molIMREChowdhury and Kebarle, 1986gas phase; B
Δr20. ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M
Δr15.9kJ/molIMREFrench, Ikuta, et al., 1982gas phase; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
15.300.PHPMSPaul and Kebarle, 1991gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M
16.300.PHPMSChowdhury and Kebarle, 1986gas phase; M
16.300.PHPMSSunner, Nishizawa, et al., 1981gas phase; Entropy change calculated or estimated; M

C6H5- + Hydrogen cation = Benzene

By formula: C6H5- + H+ = C6H6

Quantity Value Units Method Reference Comment
Δr1678.7 ± 2.1kJ/molG+TSDavico, Bierbaum, et al., 1995gas phase; Revised per Ervin and DeTuro, 2002 change in NH3 acidity. Alecu, Gao, et al., 2007 using thermal methods, agrees with this BDE: 112.8±0.6; value altered from reference due to change in acidity scale; B
Δr1678.5 ± 0.88kJ/molD-EAGunion, Gilles, et al., 1992gas phase; B
Δr1677. ± 10.kJ/molTDEqMeot-ner and Sieck, 1986gas phase; B
Δr1680. ± 42.kJ/molCIDTGraul and Squires, 1990gas phase; B
Δr1665. ± 23.kJ/molG+TSBohme and Young, 1971gas phase; B
Quantity Value Units Method Reference Comment
Δr1641.8 ± 1.7kJ/molIMREDavico, Bierbaum, et al., 1995gas phase; Revised per Ervin and DeTuro, 2002 change in NH3 acidity. Alecu, Gao, et al., 2007 using thermal methods, agrees with this BDE: 112.8±0.6; value altered from reference due to change in acidity scale; B
Δr1636. ± 8.4kJ/molTDEqMeot-ner and Sieck, 1986gas phase; B
Δr1632. ± 27.kJ/molIMRBBartmess and McIver Jr., 1979gas phase; B
Δr1628. ± 23.kJ/molIMRBBohme and Young, 1971gas phase; B

C6H6+ + Benzene = (C6H6+ • Benzene)

By formula: C6H6+ + C6H6 = (C6H6+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr60. ± 30.kJ/molAVGN/AAverage of 7 out of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Δr120.J/mol*KPHPMSHiraoka, Fujimaki, et al., 1991gas phase; M
Δr110.J/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Δr96.J/mol*KHPMSField, Hamlet, et al., 1969gas phase; M

Lithium ion (1+) + Benzene = (Lithium ion (1+) • Benzene)

By formula: Li+ + C6H6 = (Li+ • C6H6)

Quantity Value Units Method Reference Comment
Δr161. ± 13.kJ/molCIDTAmicangelo and Armentrout, 2000RCD
Δr159.kJ/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Δr153.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr115.J/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr124.kJ/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M

Bromine anion + Benzene = (Bromine anion • Benzene)

By formula: Br- + C6H6 = (Br- • C6H6)

Quantity Value Units Method Reference Comment
Δr38. ± 8.4kJ/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr71.1J/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr71.J/mol*KN/APaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr10. ± 4.2kJ/molIMREPaul and Kebarle, 1991gas phase; B
Δr16. ± 11.kJ/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
0.0423.PHPMSPaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M

(Sodium ion (1+) • Benzene) + Benzene = (Sodium ion (1+) • 2Benzene)

By formula: (Na+ • C6H6) + C6H6 = (Na+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr81. ± 5.kJ/molAVGN/AAverage of 7 values; Individual data points

Sodium ion (1+) + Benzene = (Sodium ion (1+) • Benzene)

By formula: Na+ + C6H6 = (Na+ • C6H6)

Quantity Value Units Method Reference Comment
Δr95.4 ± 5.9kJ/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Δr88.3 ± 5.0kJ/molCIDTAmicangelo and Armentrout, 2000RCD
Δr88.3 ± 4.6kJ/molCIDTArmentrout and Rodgers, 2000RCD
Δr117.kJ/molHPMSGuo, Purnell, et al., 1990gas phase; M
Quantity Value Units Method Reference Comment
Δr131.J/mol*KHPMSGuo, Purnell, et al., 1990gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
65.7298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

C9H13N+ + Benzene = (C9H13N+ • Benzene)

By formula: C9H13N+ + C6H6 = (C9H13N+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr46.9kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
11.331.PHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

C7H9N+ + Benzene = (C7H9N+ • Benzene)

By formula: C7H9N+ + C6H6 = (C7H9N+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr51.5kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr19.kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

C8H11N+ + Benzene = (C8H11N+ • Benzene)

By formula: C8H11N+ + C6H6 = (C8H11N+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr41.8kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr9.2kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

C10H10Fe+ + Benzene = (C10H10Fe+ • Benzene)

By formula: C10H10Fe+ + C6H6 = (C10H10Fe+ • C6H6)

Quantity Value Units Method Reference Comment
Δr30.kJ/molPHPMSMeot-Ner (Mautner), 1989gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/AMeot-Ner (Mautner), 1989gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
13.252.PHPMSMeot-Ner (Mautner), 1989gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M

(Cobalt ion (1+) • Benzene) + Benzene = (Cobalt ion (1+) • 2Benzene)

By formula: (Co+ • C6H6) + C6H6 = (Co+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr167. ± 14.kJ/molCIDTMeyer, Khan, et al., 1995RCD
Quantity Value Units Method Reference Comment
Δr116.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(490 K); M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
167. (+13.,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M
113. (+4.2,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(490 K); M

C7H8+ + Benzene = (C7H8+ • Benzene)

By formula: C7H8+ + C6H6 = (C7H8+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr51.0kJ/molMPIErnstberger, Krause, et al., 1990gas phase; M
Δr23.kJ/molPIRuhl, Bisling, et al., 1986gas phase; from vIP of perpendicular dimer; M
Δr51.9kJ/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

C2H7O+ + Benzene = (C2H7O+ • Benzene)

By formula: C2H7O+ + C6H6 = (C2H7O+ • C6H6)

Quantity Value Units Method Reference Comment
Δr88.kJ/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/ADeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
36.491.PHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M

(Potassium ion (1+) • Benzene • Water) + Benzene = (Potassium ion (1+) • 2Benzene • Water)

By formula: (K+ • C6H6 • H2O) + C6H6 = (K+ • 2C6H6 • H2O)

Quantity Value Units Method Reference Comment
Δr60.2kJ/molHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle,switching reaction(K+ 3H2O)C6H6, Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr126.J/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle,switching reaction(K+ 3H2O)C6H6, Searles and Kebarle, 1969; M

(Potassium ion (1+) • 2Water • Benzene) + Water = (Potassium ion (1+) • 3Water • Benzene)

By formula: (K+ • 2H2O • C6H6) + H2O = (K+ • 3H2O • C6H6)

Quantity Value Units Method Reference Comment
Δr49.4kJ/molHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle,switching reaction(K+)4H2O; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle,switching reaction(K+)4H2O; Searles and Kebarle, 1969; M

(Potassium ion (1+) • Water • Benzene) + Water = (Potassium ion (1+) • 2Water • Benzene)

By formula: (K+ • H2O • C6H6) + H2O = (K+ • 2H2O • C6H6)

Quantity Value Units Method Reference Comment
Δr53.1kJ/molHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle,switching reaction(K+)3H2O; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr89.5J/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle,switching reaction(K+)3H2O; Searles and Kebarle, 1969; M

Iodide + Benzene = (Iodide • Benzene)

By formula: I- + C6H6 = (I- • C6H6)

Quantity Value Units Method Reference Comment
Δr26. ± 8.4kJ/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr38. ± 4.2kJ/molTDAsCaldwell, Masucci, et al., 1989gas phase; B,M
Quantity Value Units Method Reference Comment
Δr59.4J/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr8. ± 11.kJ/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

C3H3+ + Benzene = (C3H3+ • Benzene)

By formula: C3H3+ + C6H6 = (C3H3+ • C6H6)

Quantity Value Units Method Reference Comment
Δr38.kJ/molHPMSField, Hamlet, et al., 1969gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr40.J/mol*KHPMSField, Hamlet, et al., 1969gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr30.kJ/molHPMSField, Hamlet, et al., 1969gas phase; Entropy change is questionable; M

(Potassium ion (1+) • Water • 2Benzene) + Water = (Potassium ion (1+) • 2Water • 2Benzene)

By formula: (K+ • H2O • 2C6H6) + H2O = (K+ • 2H2O • 2C6H6)

Quantity Value Units Method Reference Comment
Δr51.0kJ/molHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle(K+ 3H2O)C6H6; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr123.J/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle(K+ 3H2O)C6H6; Searles and Kebarle, 1969; M

(C6H6+ • 2Benzene) + Benzene = (C6H6+ • 3Benzene)

By formula: (C6H6+ • 2C6H6) + C6H6 = (C6H6+ • 3C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr29.kJ/molPHPMSHiraoka, Fujimaki, et al., 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/AHiraoka, Fujimaki, et al., 1991gas phase; Entropy change calculated or estimated; M

(Potassium ion (1+) • Benzene • 2Water) + Benzene = (Potassium ion (1+) • 2Benzene • 2Water)

By formula: (K+ • C6H6 • 2H2O) + C6H6 = (K+ • 2C6H6 • 2H2O)

Quantity Value Units Method Reference Comment
Δr53.6kJ/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+ 3H2O)C6H6; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr141.J/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+ 3H2O)C6H6; Searles and Kebarle, 1969; M

Chromium ion (1+) + Benzene = (Chromium ion (1+) • Benzene)

By formula: Cr+ + C6H6 = (Cr+ • C6H6)

Quantity Value Units Method Reference Comment
Δr168.kJ/molMIDLin, Chen, et al., 1997RCD
Δr164. ± 14.kJ/molRAKLin and Dunbar, 1997RCD
Δr170. ± 10.kJ/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
170. (+9.6,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Potassium ion (1+) • 2Benzene) + Water = (Potassium ion (1+) • Water • 2Benzene)

By formula: (K+ • 2C6H6) + H2O = (K+ • H2O • 2C6H6)

Quantity Value Units Method Reference Comment
Δr57.3kJ/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+ 2H2O)C6H6; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr109.J/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+ 2H2O)C6H6; Searles and Kebarle, 1969; M

(Potassium ion (1+) • Benzene) + Water = (Potassium ion (1+) • Water • Benzene)

By formula: (K+ • C6H6) + H2O = (K+ • H2O • C6H6)

Quantity Value Units Method Reference Comment
Δr75.7kJ/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+ C6H6)C6H6; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr125.J/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+ C6H6)C6H6; Searles and Kebarle, 1969; M

(Potassium ion (1+) • 2Water) + Benzene = (Potassium ion (1+) • Benzene • 2Water)

By formula: (K+ • 2H2O) + C6H6 = (K+ • C6H6 • 2H2O)

Quantity Value Units Method Reference Comment
Δr56.1kJ/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)3H2O; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr102.J/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)3H2O; Searles and Kebarle, 1969; M

(Potassium ion (1+) • 3Water) + Benzene = (Potassium ion (1+) • Benzene • 3Water)

By formula: (K+ • 3H2O) + C6H6 = (K+ • C6H6 • 3H2O)

Quantity Value Units Method Reference Comment
Δr52.7kJ/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)4H2O; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr115.J/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)4H2O; Searles and Kebarle, 1969; M

(Potassium ion (1+) • Water) + Benzene = (Potassium ion (1+) • Benzene • Water)

By formula: (K+ • H2O) + C6H6 = (K+ • C6H6 • H2O)

Quantity Value Units Method Reference Comment
Δr70.3kJ/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)2H2O; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr113.J/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)2H2O; Searles and Kebarle, 1969; M

(Chromium ion (1+) • Benzene) + Benzene = (Chromium ion (1+) • 2Benzene)

By formula: (Cr+ • C6H6) + C6H6 = (Cr+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr212. ± 38.kJ/molRAKLin and Dunbar, 1997RCD
Δr232. ± 18.kJ/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
231. (+18.,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

Fluorine anion + Benzene = (Fluorine anion • Benzene)

By formula: F- + C6H6 = (F- • C6H6)

Quantity Value Units Method Reference Comment
Δr64.02kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr81.6J/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr39.3kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

Manganese ion (1+) + Benzene = (Manganese ion (1+) • Benzene)

By formula: Mn+ + C6H6 = (Mn+ • C6H6)

Quantity Value Units Method Reference Comment
Δr144.kJ/molMIDLin, Chen, et al., 1997RCD
Δr133. ± 9.2kJ/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
133. (+8.8,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

Vanadium ion (1+) + Benzene = (Vanadium ion (1+) • Benzene)

By formula: V+ + C6H6 = (V+ • C6H6)

Quantity Value Units Method Reference Comment
Δr>230.kJ/molRAKGapeev and Dunbar, 2002RCD
Δr234. ± 10.kJ/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
233. (+9.6,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

Iron ion (1+) + Benzene = (Iron ion (1+) • Benzene)

By formula: Fe+ + C6H6 = (Fe+ • C6H6)

Quantity Value Units Method Reference Comment
Δr197.kJ/molRAKGapeev and Dunbar, 2002RCD
Δr207. ± 12.kJ/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
208. (+9.6,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

Titanium ion (1+) + Benzene = (Titanium ion (1+) • Benzene)

By formula: Ti+ + C6H6 = (Ti+ • C6H6)

Quantity Value Units Method Reference Comment
Δr213.kJ/molRAKGapeev and Dunbar, 2002RCD
Δr259. ± 9.2kJ/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
259. (+8.8,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Potassium ion (1+) • Benzene) + Benzene = (Potassium ion (1+) • 2Benzene)

By formula: (K+ • C6H6) + C6H6 = (K+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr67.4 ± 7.1kJ/molCIDTAmicangelo and Armentrout, 2000RCD
Δr78.7kJ/molHPMSSunner, Nishizawa, et al., 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr142.J/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; M

C4H9+ + Benzene = (C4H9+ • Benzene)

By formula: C4H9+ + C6H6 = (C4H9+ • C6H6)

Quantity Value Units Method Reference Comment
Δr92.kJ/molPHPMSSen Sharma, Ikuta, et al., 1982gas phase; forms protonated t-butylbenzene; M
Quantity Value Units Method Reference Comment
Δr210.J/mol*KPHPMSSen Sharma, Ikuta, et al., 1982gas phase; forms protonated t-butylbenzene; M

(C6H6+ • Benzene) + Benzene = (C6H6+ • 2Benzene)

By formula: (C6H6+ • C6H6) + C6H6 = (C6H6+ • 2C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr33. ± 2.kJ/molPHPMSHiraoka, Fujimaki, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr82.8J/mol*KPHPMSHiraoka, Fujimaki, et al., 1991gas phase; M

Potassium ion (1+) + Benzene = (Potassium ion (1+) • Benzene)

By formula: K+ + C6H6 = (K+ • C6H6)

Quantity Value Units Method Reference Comment
Δr73. ± 4.kJ/molCIDTAmicangelo and Armentrout, 2000RCD
Δr80.3kJ/molHPMSSunner, Nishizawa, et al., 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; M

C6H7N+ + Benzene = (C6H7N+ • Benzene)

By formula: C6H7N+ + C6H6 = (C6H7N+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr49.8kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr94.6J/mol*KPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M

C11H10+ + Benzene = (C11H10+ • Benzene)

By formula: C11H10+ + C6H6 = (C11H10+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr38.kJ/molPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M

C6H5Cl+ + Benzene = (C6H5Cl+ • Benzene)

By formula: C6H5Cl+ + C6H6 = (C6H5Cl+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr58.6kJ/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

C9H12+ + Benzene = (C9H12+ • Benzene)

By formula: C9H12+ + C6H6 = (C9H12+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr44.4kJ/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

Nitric oxide anion + Benzene = (Nitric oxide anion • Benzene)

By formula: NO- + C6H6 = (NO- • C6H6)

Quantity Value Units Method Reference Comment
Δr172.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

(Iron ion (1+) • Benzene) + Benzene = (Iron ion (1+) • 2Benzene)

By formula: (Fe+ • C6H6) + C6H6 = (Fe+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr187. ± 16.kJ/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
187. (+16.,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Titanium ion (1+) • Benzene) + Benzene = (Titanium ion (1+) • 2Benzene)

By formula: (Ti+ • C6H6) + C6H6 = (Ti+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr253. ± 18.kJ/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
253. (+18.,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Manganese ion (1+) • Benzene) + Benzene = (Manganese ion (1+) • 2Benzene)

By formula: (Mn+ • C6H6) + C6H6 = (Mn+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr203. ± 16.kJ/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
203. (+16.,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Nickel ion (1+) • Benzene) + Benzene = (Nickel ion (1+) • 2Benzene)

By formula: (Ni+ • C6H6) + C6H6 = (Ni+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr147. ± 12.kJ/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
147. (+12.,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Copper ion (1+) • Benzene) + Benzene = (Copper ion (1+) • 2Benzene)

By formula: (Cu+ • C6H6) + C6H6 = (Cu+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr155. ± 12.kJ/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
155. (+12.,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(CAS Reg. No. 79431-04-2 • 4294967295Benzene) + Benzene = CAS Reg. No. 79431-04-2

By formula: (CAS Reg. No. 79431-04-2 • 4294967295C6H6) + C6H6 = CAS Reg. No. 79431-04-2

Quantity Value Units Method Reference Comment
Δr90. ± 18.kJ/molTherLee and Squires, 1986gas phase; Between SiH4, tBuOH; value altered from reference due to change in acidity scale; B

Nickel ion (1+) + Benzene = (Nickel ion (1+) • Benzene)

By formula: Ni+ + C6H6 = (Ni+ • C6H6)

Quantity Value Units Method Reference Comment
Δr243. ± 11.kJ/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
243. (+10.,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: Tanya L. Myers, Russell G. Tonkyn, Ashley M. Oeck, Tyler O. Danby, John S. Loring, Matthew S. Taubman, Stephen W. Sharpe, Jerome C. Birnbaum, and Timothy J. Johnson

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, UV/Visible spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center, 1990.
NIST MS number 114388

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Romand and Vodar, 1951
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 118
Instrument n.i.g.
Melting point 5.5
Boiling point 80.0

Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   D6h     Symmetry Number σ = 12


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a1g 1 CH str 3062  C  ia 3061.9 VS p liq.
a1g 2 Ring str 992  C  ia 991.6 VS p liq.
a2g 3 CH bend 1326  E  ia 1326 VW liq.
a2u 4 CH bend 673  B 673 S gas  ia
b1u 5 CH str 3068  C 3067.57 VW sln.  ia
b1u 6 Ring deform 1010  C 1010 W sln.  ia
b2g 7 CH bend 995  E  ia  ia OC197207)
b2g 8 Ring deform 703  E  ia  ia OC198, ν208)
b2u 9 Ring str 1310  C 1310 W liq.  ia
b2u 10 CH bend 1150  C 1150 W liq.  ia
e1g 11 CH bend 849  C  ia 848.9 M dp liq.
e1u 12 CH str 3063  E 3080 S liq.  ia FR1316)
e1u 12 CH str 3063  E 3030 S liq.  ia FR1316)
e1u 13 Ring str + deform 1486  B 1486 S gas  ia
e1u 14 CH bend 1038  B 1038 S gas  ia
e2g 15 CH str 3047  C  ia 3046.8 S dp liq.
e2g 16 Ring str 1596  E  ia 1606.4 S dp liq. FR218)
e2g 16 Ring str 1596  E  ia 1584.6 S dp liq. FR218)
e2g 17 CH bend 1178  C  ia 1178.0 S dp liq.
e2g 18 Ring deform 606  C  ia 605.6 S dp liq.
e2u 19 CH bend 975  C 975 W liq.  ia
e2u 20 Ring deform 410  C 417.7 S sln.  ia
e2u 20 Ring deform 410  C 403.0 S sln.  ia

Source: Shimanouchi, 1972

Notes

VSVery strong
SStrong
MMedium
WWeak
VWVery weak
iaInactive
pPolarized
dpDepolarized
FRFermi resonance with an overtone or a combination tone indicated in the parentheses.
OCFrequency estimated from an overtone or a combination tone indicated in the parentheses.
B1~3 cm-1 uncertainty
C3~6 cm-1 uncertainty
E15~30 cm-1 uncertainty

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y., Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons, J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]

Good and Smith, 1969
Good, W.D.; Smith, N.K., Enthalpies of combustion of toluene, benzene, cyclohexane, cyclohexene, methylcyclopentane, 1-methylcyclopentene, and n-hexane, J. Chem. Eng. Data, 1969, 14, 102-106. [all data]

Prosen, Gilmont, et al., 1945
Prosen, E.J.; Gilmont, R.; Rossini, F.D., Heats of combustion of benzene, toluene, ethyl-benzene, o-xylene, m-xylene, p-xylene, n-propylbenzene, and styrene, J. Res. NBS, 1945, 34, 65-70. [all data]

Prosen, Johnson, et al., 1946
Prosen, E.J.; Johnson, W.H.; Rossini, F.D., Heats of combustion and formation at 25°C of the alkylbenzenes through C10H14, and of the higher normal monoalkylbenzenes, J. Res. NBS, 1946, 36, 455-461. [all data]

Landrieu, Baylocq, et al., 1929
Landrieu, P.; Baylocq, F.; Johnson, J.R., Etude thermochimique dans la serie furanique, Bull. Soc. Chim. France, 1929, 45, 36-49. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Todd S.S., 1978
Todd S.S., Vapor-flow calorimetry of benzene, J. Chem. Thermodyn., 1978, 10, 641-648. [all data]

Montgomery J.B., 1942
Montgomery J.B., The heat capacity of organic vapors. IV. Benzene, fluorobenzene, toluene, cyclohexane, methylcyclohexane and cyclohexene, J. Am. Chem. Soc., 1942, 64, 2375-2377. [all data]

Pitzer K.S., 1943
Pitzer K.S., The thermodynamics and molecular structure of benzene and its methyl derivatives, J. Am. Chem. Soc., 1943, 65, 803-829. [all data]

Scott D.W., 1947
Scott D.W., The heat capacity of benzene vapor. The contribution of anharmonicity, J. Chem. Phys., 1947, 15, 565-568. [all data]

Oliver, Eaton, et al., 1948
Oliver, G.D.; Eaton, M.; Huffman, H.M., The heat capacity, heat of fusion and entropy of benzene, J. Am. Chem. Soc., 1948, 70, 1502-1505. [all data]

Huffman, Parks, et al., 1930
Huffman, H.M.; Parks, G.S.; Daniels, A.C., Thermal data on organic compounds. VII. The heat capacities, entropies and free energies of twelve aromatic hydrocarbons, J. Am. Chem. Soc., 1930, 52, 1547-1558. [all data]

Ahlberg, Blanchard, et al., 1937
Ahlberg, J.E.; Blanchard, E.R.; Lundberg, W.O., The heat capacities of benzene, methyl alcohol and glycerol at very low temperatures, J. Chem. Phys., 1937, 5, 537-551. [all data]

Grolier, Roux-Desgranges, et al., 1993
Grolier, J.-P.E.; Roux-Desgranges, G.; Berkane, M.; Jimenez, E.; Wilhelm, E., Heat capacities and densities of mixtures of very polar substances 2. Mixtures containing N,N-dimethylformamide, J. Chem. Thermodynam., 1993, 25(1), 41-50. [all data]

Czarnota, 1991
Czarnota, I., Heat capacity of benzene at high pressures, J. Chem. Thermodynam., 1991, 23, 25-30. [all data]

Lainez, Rodrigo, et al., 1989
Lainez, A.; Rodrigo, M.M.; Wilhelm, E.; Grolier, J.-P.E., Excess volumes and excess heaat capacitiies of some mixtures with trans,trans,cis-1,5,9-cyclododecatriene at 298.15K, J. Chem. Eng. Data, 1989, 34, 332-335. [all data]

Shiohama, Ogawa, et al., 1988
Shiohama, Y.; Ogawa, H.; Murakami, S.; Fujihara, I., Excess molar isobaric heat capacities and isentropic compressibilities of (cis- or trans-decalin + benzene or toluene or iso-octane or n-heptane) at 298.15 K, J. Chem. Thermodynam., 1988, 20, 1183-1189. [all data]

Grolier, Roux-Desgranges, et al., 1987
Grolier, J.-P.E.; Roux-Desgranges, G.; Kooner, Z.S.; Smith, J.F.; Hepler, L.G., Thermal and volumetric properties of chloroform + benzene mixtures and the ideal associated solution model of complex formation, J. Solution Chem., 1987, 16, 745-752. [all data]

Kalali, Kohler, et al., 1987
Kalali, H.; Kohler, F.; Svejda, P., Excess properties of the mixture bis(2-dichlorethyl)ether (chlorex) + 2,2,4-trimethylpentane (isooctane), Monatsh. Chem., 1987, 118, 1-18. [all data]

Tanaka, 1987
Tanaka, R., Excess heat capacities for mixture of benzene with n-heptane at 293.15, 298.15 and 303.15 K, J. Chem. Eng. Data, 1987, 32, 176-177. [all data]

Naziev, Bashirov, et al., 1986
Naziev, Ya.M.; Bashirov, M.M.; Badalov, Yu.A., Experimental device for measurement of isobaric specific heat of electrolytes at elevated pressures, Inzh-Fiz. Zhur., 1986, 51(5), 789-795. [all data]

Reddy, 1986
Reddy, K.S., Isentropic compressibilities of binary liquid mixtures at 303.15 and 313.15 K, J. Chem. Eng. Data, 1986, 31, 238-240. [all data]

Ogawa and Murakami, 1985
Ogawa, H.; Murakami, S., Flow microcalorimeter for heat capacities of solutions, Thermochim. Acta, 1985, 88, 255-260. [all data]

Tanaka, 1985
Tanaka, R., Excess heat capacities for mixtures of benzene with cyclopentane, methylcyclohexane, and cyclooctane at 298.15 K, J. Chem. Eng. Data, 1985, 30, 267-269. [all data]

Gorbunova, Simonov, et al., 1983
Gorbunova, N.I.; Simonov, V.M.; Shipova, V.A., Thermodynamic properties of benzene, Teplofiz. Vys. Temp., 1983, 21(2), 270-275. [all data]

Gorbunova, Grigoriev, et al., 1982
Gorbunova, N.I.; Grigoriev, V.A.; Simonov, V.M.; Shipova, V.A., Heat capacity of liquid benzene and hexafluorobenzene at atmospheric pressure, Int. J. Thermophysics, 1982, 3, 1-15. [all data]

Grolier, Inglese, et al., 1982
Grolier, J.-P.E.; Inglese, A.; Wilhelm, E., Excess volumes and excess heat capacities of tetrachloroethene + cyclohexane, + methylcyclohexane, + benzene, and + toluene at 298.15 K, J. Chem. Thermodynam., 1982, 14, 523-529. [all data]

Tanaka, 1982
Tanaka, R., Determination of excess heat capacities of (benzene + tetrachloromethane and + cyclohexane) between 293.15 and 303.15 K by use of a Picker flow calorimeter, J. Chem. Thermodynam., 1982, 14, 259-268. [all data]

Wilhelm, Faradjzadeh, et al., 1982
Wilhelm, E.; Faradjzadeh, A.; Grolier, J.-P.E., Excess volumes and excess heat capacities of 2,3-dimethylbutane + butane and + toluene, J. Chem. Thermodynam., 1982, 14, 1199-1200. [all data]

Atalla, El-Sharkawy, et al., 1981
Atalla, S.R.; El-Sharkawy, A.A.; Gasser, F.A., Measurement of thermal properties of liquids with an AC heated-wire technique, Inter. J. Thermophys., 1981, 2(2), 155-162. [all data]

Vesely, Zabransky, et al., 1979
Vesely, F.; Zabransky, M.; Svoboda, V.; Pick, J., The use of mixing calorimeter for measuring heat capacities of liquids, Coll. Czech. Chem. Commun., 1979, 44, 3529-3532. [all data]

Grolier, Wilhelm, et al., 1978
Grolier, J.-P.E.; Wilhelm, E.; Hamedi, M.H., Molar heat capacities and isothermal compressibility of binary liquid mixtures: carbon tetrachloride + benzene, carbon tetrachloride + cyclohexane and benzene + cyclohexane, Ber. Bunsenges. Phys. Chem., 1978, 82, 1282-1290. [all data]

Vesely, Svoboda, et al., 1977
Vesely, F.; Svoboda, V.; Pick, J., Heat capacities of some organic liquids determined with the mixing calorimeter, 1st Czech. Conf. Calorimetry (Lect. Short Commun.), 1977, C9-1-C9-4. [all data]

Wilhelm, Grolier, et al., 1977
Wilhelm, E.; Grolier, J.-P.E.; Karbalai Ghassemi, M.H., Molar heat capacities of binary liquid mixtures: 1,2-dichloroethane + benzene, + toluene, and + p-xylene, Ber. Bunsenges. Phys. Chem., 1977, 81, 925-930. [all data]

Fortier, Benson, et al., 1976
Fortier, J.-L.; Benson, G.C.; Picker, P., Heat capacities of some organic liquids determined with the Picker flow calorimeter, J. Chem. Thermodynam., 1976, 8, 289-299. [all data]

Fortier and Benson, 1976
Fortier, J.-L.; Benson, G.C., Excess heat capacities of binary liquid mixtures determined with a Picker flow calorimeter, J. Chem. Thermodynam., 1976, 8, 411-423. [all data]

Rajagopal and Subrahmanyam, 1974
Rajagopal, E.; Subrahmanyam, S.V., Excess function of VE,(dVE/dp)T, and CpE of isooctane + benzene and + toluene, J. Chem. Thermodynam., 1974, 6, 873-876. [all data]

Deshpande and Bhatagadde, 1971
Deshpande, D.D.; Bhatagadde, L.G., Heat capacities at constant volume, free volumes, and rotational freedom in some liquids, Aust. J. Chem., 1971, 24, 1817-1822. [all data]

Hyder Khan and Subrahmanyam, 1971
Hyder Khan, V.; Subrahmanyam, S.V., Excess thermodynamic functions of the systems: benzene + p-xylene and benzene + p-dioxan, Trans. Faraday Soc., 1971, 67, 2282-2291. [all data]

Subrahmanyam and Khan, 1969
Subrahmanyam, S.V.; Khan, V.H., Thermodynamics of the system benzene - p-dioxane, Curr. Sci., 1969, 38, 510-511. [all data]

Recko, 1968
Recko, W.M., Excess heat capacity of the binary systems formed by n-propyl alcohol with benzene, mesitylene and cyclohexane, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1968, 16, 549-552. [all data]

Pacor, 1967
Pacor, P., Applicability of the DuPont 900 DTA apparatus in quantitative differential thermal analysis, Anal. Chim. Acta, 1967, 37, 200-208. [all data]

Rastorguev and Ganiev, 1967
Rastorguev, Yu.L.; Ganiev, Yu.A., Study of the heat capacity of selected solvents, Izv. Vyssh. Uchebn. Zaved. Neft Gaz. 10, 1967, No.1, 79-82. [all data]

Findenegg, Gruber, et al., 1965
Findenegg, G.H.; Gruber, K.; Pereira, J.F.; Kohler, F., Kalorimetrische Messungen an Mischungen von Nichtelektrolyten, 1. Mitt.: Molwarme des Systems 1,2-Dibromathan-Benzol, Monatsh. Chem., 1965, 96, 669-678. [all data]

Rabinovich and Nikolaev, 1962
Rabinovich, I.B.; Nikolaev, P.N., Isotopic effect in the specific heat of some deutero compounds, Dokl. Akad. Nauk, 1962, SSSR 142, 1335-1338. [all data]

Swietoslawski and Zielenkiewicz, 1960
Swietoslawski, W.; Zielenkiewicz, A., Mean specific heat in homologous series of binary and ternary positive azeotropes, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1960, 8, 651-653. [all data]

Duff and Everett, 1956
Duff, G.M.; Everett, D.H., The heat capacity of the system benzene + diphenylmethane, Trans. Faraday Soc., 1956, 52, 753-763. [all data]

Staveley, Tupman, et al., 1955
Staveley, L.A.K.; Tupman, W.I.; Hart, K.R., Some thermodynamice properties of the systems benzene + ethylene dichloride, benzene + carbon tetrachloride, acetone + chloroform, and acetone + carbon disulphide, Trans. Faraday Soc., 1955, 51, 323-342. [all data]

Sieg, Crtzen, et al., 1951
Sieg, L.; Crtzen, J.L.; Jost, W., Zur Thermodynamik von Mischphasen IX. Über das Verdampfungsgleichgewicht Benzol-1-2-Dichloraethan, Z. Phys. Chem., 1951, 198, 263-269. [all data]

Tschamler, 1948
Tschamler, H., Uber binare flussige Mischungen I. Mischungswarment, Volumseffekte und Zustandsdiagramme von chlorex mit benzol und n-alkylbenzolen, Monatsh. Chem., 1948, 79, 162-177. [all data]

Kurbatov, 1947
Kurbatov, V.Ya., Specific heat of liquids. I. Specific heat of benzenoid hydrocarbons, Zhur. Obshch. Khim., 1947, 17, 1999-2003. [all data]

Zhdanov, 1941
Zhdanov, A.K., Specific heats of some liquids and azeotropic mixtures, Zhur. Obshch. Khim., 1941, 11, 471-482. [all data]

Burlew, 1940
Burlew, J.S., Measurement of the heat capacity of a small volume of liquid by the piezo-thermometric method. III. Heat capacity of benzene and of toluene from 8°C. to the boiling point, J. Am. Chem. Soc., 1940, 62, 696-700. [all data]

Kolosovskii and Udovenko, 1934
Kolosovskii, N.A.; Udovenko, W.W., Specific heat of liquids. II., Zhur. Obshchei Khim., 1934, 4, 1027-1033. [all data]

de Kolossowsky and Udowenko, 1933
de Kolossowsky, N.A.; Udowenko, W.W., Mesure des chaleurs specifique moleculaires de quelques liquides, Compt. rend., 1933, 197, 519-520. [all data]

Ferguson and Miller, 1933
Ferguson, A.; Miller, J.T., A method for the determination of the specific heats of liquids, and a determination of the specific heats of aniline and benzene over the approximate range 20°C to 50°C, Proc. Phys. Soc. London, 1933, 45, 194-207. [all data]

Richards and Wallace, 1932
Richards, W.T.; Wallace, J.H., Jr., The specific heats of five organic liquids from their adiabatic temperature-pressure coefficients, J. Am. Chem. Soc., 1932, 54, 2705-2713. [all data]

Fiock, Ginnings, et al., 1931
Fiock, E.F.; Ginnings, D.C.; Holton, W.B., Calorimetric determinations of thermal properties of methyl alcohol, ethyl alcohol, and benzene, J. Res., 1931, NBS 6, 881-900. [all data]

Andrews, Lynn, et al., 1926
Andrews, D.H.; Lynn, G.; Johnston, J., The heat capacities and heat of crystallization of some isomeric aromatic compounds, J. Am. Chem. Soc., 1926, 48, 1274-1287. [all data]

Williams and Daniels, 1925
Williams, J.W.; Daniels, F., The specific heats of binary mixtures, J. Am. Chem. Soc., 1925, 47, 1490-1503. [all data]

Willams and Daniels, 1924
Willams, J.W.; Daniels, F., The specific heats of certain organic liquids at elevated temperatures, J. Am. Chem. Soc., 1924, 46, 903-917. [all data]

Dejardin, 1919
Dejardin, G., Pressions maxima des vapeurs du benzene et du cyclohexane aux temperatures moyennes et calcul de leurs chaleurs specifiques principales, Ann. phys. [9], 1919, 11, 253-291. [all data]

von Reis, 1881
von Reis, M.A., Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht, Ann. Physik [3], 1881, 13, 447-464. [all data]

Aoyama and Kanda, 1935
Aoyama, S.; Kanda, E., Studies on the heat capacities at low temperature. Report I. Heat capacities of some organic substances at low temperature, Sci. Rept. Tohoku Imp. Univ. [1]24, 1935, 107-115. [all data]

Maass and Walbauer, 1925
Maass, O.; Walbauer, L.J., The specific heats and latent heats of fusion of ice and of several organic compounds, J. Am. Chem. Soc., 1925, 47, 1-9. [all data]

Kruif, 1980
Kruif, C.G., Enthalpies of sublimation and vapour pressures of 11 polycyclic hydrocarbons, J. Chem. Thermodyn., 1980, 12, 243-248. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Lubomska, Banas, et al., 2002
Lubomska, Monika; Banas, Agnieszka; Malanowski, Stanislaw K., Vapor-Liquid Equilibrium in Binary Systems Formed by Allyl Alcohol with Benzene and with Cyclohexane, J. Chem. Eng. Data, 2002, 47, 6, 1466-1471, https://doi.org/10.1021/je025540l . [all data]

Liu and Dickhut, 1994
Liu, Kewen; Dickhut, Rebecca M., Saturation vapor pressures and thermodynamic properties of benzene and selected chlorinated benzenes at environmental temperatures, Chemosphere, 1994, 29, 3, 581-589, https://doi.org/10.1016/0045-6535(94)90445-6 . [all data]

Ambrose, Ewing, et al., 1990
Ambrose, D.; Ewing, M.B.; Ghiassee, N.B.; Sanchez Ochoa, J.C., The ebulliometric method of vapour-pressure measurement: vapour pressures of benzene, hexafluorobenzene, and naphthalene, The Journal of Chemical Thermodynamics, 1990, 22, 6, 589-605, https://doi.org/10.1016/0021-9614(90)90151-F . [all data]

Dong, Lin, et al., 1988
Dong, Jin-Quan; Lin, Rui-Sen; Yen, Wen-Hsing, Heats of vaporization and gaseous molar heat capacities of ethanol and the binary mixture of ethanol and benzene, Can. J. Chem., 1988, 66, 4, 783-790, https://doi.org/10.1139/v88-136 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Natarajan, 1983
Natarajan, G., High-temperature calorimeter for the measurement of vapor pressure and enthalpy of vaporization, Rev. Sci. Instrum., 1983, 54, 9, 1175, https://doi.org/10.1063/1.1137545 . [all data]

Tsonopoulos and Wilson, 1983
Tsonopoulos, Constantine; Wilson, G.M., High-temperature mutual solubilities of hydrocarbons and water. Part I: Benzene, cyclohexane andn-hexane, AIChE J., 1983, 29, 6, 990-999, https://doi.org/10.1002/aic.690290618 . [all data]

Rao and Viswanath, 1977
Rao, Yaddanapudi J.; Viswanath, Dabir S., Integral isobaric heats of vaporization of benzene-chloroethane systems, J. Chem. Eng. Data, 1977, 22, 1, 36-38, https://doi.org/10.1021/je60072a011 . [all data]

Svoboda, Veselý, et al., 1973
Svoboda, V.; Veselý, F.; Holub, R.; Pick, J., Enthalpy data of liquids. II. The dependence of heats of vaporization of methanol, propanol, butanol, cyclohexane, cyclohexene, and benzene on temperature, Collect. Czech. Chem. Commun., 1973, 38, 12, 3539-3543, https://doi.org/10.1135/cccc19733539 . [all data]

Mita, Imai, et al., 1971
Mita, Itaru; Imai, Isao; Kambe, Hirotaro, Determination of heat of mixing and heat of vaporization with a differential scanning calorimeter, Thermochimica Acta, 1971, 2, 4, 337-344, https://doi.org/10.1016/0040-6031(71)85035-9 . [all data]

Forziati, Norris, et al., 1949
Forziati, Alphonse F.; Norris, William R.; Rossini, Frederick D., Vapor pressures and boiling points of sixty API-NBS hydrocarbons, J. RES. NATL. BUR. STAN., 1949, 43, 6, 555-17, https://doi.org/10.6028/jres.043.050 . [all data]

Yarym-Agaev, Fedos'ev, et al., 1949
Yarym-Agaev, N.L.; Fedos'ev, N.N.; Skorikov, K.G., Zh. Fiz. Khim., 1949, 11, 1257. [all data]

Thomson, 1946
Thomson, George Wm., The Antoine Equation for Vapor-pressure Data., Chem. Rev., 1946, 38, 1, 1-39, https://doi.org/10.1021/cr60119a001 . [all data]

Scott and Brickwedde, 1945
Scott, R.B.; Brickwedde, F.G., Thermodynamic properties of solid and liquid ethylbenzene from 0 to 300 degrees K, J. RES. NATL. BUR. STAN., 1945, 35, 6, 501-17, https://doi.org/10.6028/jres.035.024 . [all data]

Willingham, Taylor, et al., 1945
Willingham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D., Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane, and alkylbenzene hydrocarbons, J. RES. NATL. BUR. STAN., 1945, 35, 3, 219-17, https://doi.org/10.6028/jres.035.009 . [all data]

Smith, 1941
Smith, E.R., Boiling points of benzene, 2,2,3-trimethylbutane, 3-ethylpentane, and 2,2,4,4-tetramethylpentane within the range 100 to 1,500 millimeters of mercury, J. RES. NATL. BUR. STAN., 1941, 26, 2, 129-17, https://doi.org/10.6028/jres.026.004 . [all data]

Stuckey and Saylor, 1940
Stuckey, James M.; Saylor, John H., The Vapor Pressures of Some Organic Compounds. I. 1, J. Am. Chem. Soc., 1940, 62, 11, 2922-2925, https://doi.org/10.1021/ja01868a011 . [all data]

Eon, Pommier, et al., 1971
Eon, C.; Pommier, C.; Guiochon, G., Vapor pressures and second virial coefficients of some five-membered heterocyclic derivatives, J. Chem. Eng. Data, 1971, 16, 4, 408-410, https://doi.org/10.1021/je60051a008 . [all data]

Deshpande and Pandya, 1967
Deshpande, D.D.; Pandya, M.V., Thermodynamics of Binary Solutions. Part 2. Vapour Pressures and Excess Free Energies of Aniline Solutions, Trans. Faraday Soc., 1967, 63, 2149-2157, https://doi.org/10.1039/tf9676302149 . [all data]

Kalafati, Rasskazov, et al., 1967
Kalafati, D.D.; Rasskazov, D.S.; Petrov, E.K., Experimental Determination of a Dependence of a Saturated Vapor Pressure of Benzene on Temperature, Zh. Fiz. Khim., 1967, 41, 1357-1359. [all data]

Williamham, Taylor, et al., 1945
Williamham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D., Vapor Pressures and Boiling Points of Some Paraffin, Alkylcyclopentane, Alkylcyclohexane, and Alkylbenzene Hydrocarbons, J. Res. Natl. Bur. Stand. (U.S.), 1945, 35, 3, 219-244, https://doi.org/10.6028/jres.035.009 . [all data]

Ha, Morrison, et al., 1976
Ha, H.; Morrison, J.A.; Richards, E.L., Vapour pressures of solid benzene, cyclohexane and their mixtures, J. Chem. Soc., Faraday Trans. 1, 1976, 72, 0, 1051, https://doi.org/10.1039/f19767201051 . [all data]

Hessler, 1984
Hessler, W., Wiss. Zeitschr. Wilhelm-Pieck-Univ. Rostock, Naturwiss. Reihe, 1984, 33, 9. [all data]

De Kruif and Van Ginkel, 1977
De Kruif, C.G.; Van Ginkel, C.H.D., Torsion-weighing effusion vapour-pressure measurements on organic compounds, The Journal of Chemical Thermodynamics, 1977, 9, 8, 725-730, https://doi.org/10.1016/0021-9614(77)90015-5 . [all data]

Jackowski, 1974
Jackowski, A.W., Vapour pressures of solid benzene and of solid cyclohexane, The Journal of Chemical Thermodynamics, 1974, 6, 1, 49-52, https://doi.org/10.1016/0021-9614(74)90205-5 . [all data]

Jones, 1960
Jones, A.H., Sublimation Pressure Data for Organic Compounds., J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019 . [all data]

Milazzo, 1956
Milazzo, G., Ann. Chim. (Rome), 1956, 46, 1105. [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Wolf and Weghofer, 1938
Wolf, K.L.; Weghofer, H., Uber sublimationswarmen, Z. Phys. Chem., 1938, 39, 194-208. [all data]

de Boer, 1936
de Boer, J.H., The influence of van der Waals' forces and primary bonds on binding energy, strength and orientation, with special reference to some artificial resins, Trans. Faraday Soc., 1936, 32, 10, https://doi.org/10.1039/tf9363200010 . [all data]

Mündel, 1913
Mündel, C.F., Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1913, 85, 435. [all data]

Ziegler and Andrews, 1942
Ziegler, W.T.; Andrews, D.H., The heat capacity of benzene-d6, J. Am. Chem. Soc., 1942, 64, 2482-2485. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Smith, 1979
Smith, G.W., Phase behavior of some linear polyphenyls, Mol. Cryst. Liq. Cryst., 1979, 49, 207-209. [all data]

Tschurl, Ueberfluss, et al., 2007
Tschurl, M.; Ueberfluss, C.; Boesl, U., Anion photoelectron, photodetachment, and infrared dissociation spectra of Cl-center dot C6H6, Chem. Phys. Lett., 2007, 439, 1-3, 23-28, https://doi.org/10.1016/j.cplett.2007.03.059 . [all data]

Hiraoka, Mizuse, et al., 1988
Hiraoka, K.; Mizuse, S.; Yamabe, S., Determination of the Stabilities and Structures of X-(C6H6) Clusters (X = Cl, Br, and I), Chem. Phys. Lett., 1988, 147, 2-3, 174, https://doi.org/10.1016/0009-2614(88)85078-4 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P., Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-, J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014 . [all data]

Sunner, Nishizawa, et al., 1981
Sunner, J.; Nishizawa, K.; Kebarle, P., Ion - Solvent Molecule Interactions in the Gas Phase. Potassium Ion and Benzene, J. Phys. Chem., 1981, 85, 13, 1814, https://doi.org/10.1021/j150613a011 . [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Chowdhury and Kebarle, 1986
Chowdhury, S.; Kebarle, P., Role of Binding Energies in A-.B and A.B- Complexes in the Kinetics of Gas Phase Electron Transfer Reactions:A- + B = A + B- Involving Perfluoro Compounds: SF6, C6F11CF3, J. Chem. Phys., 1986, 85, 9, 4989, https://doi.org/10.1063/1.451687 . [all data]

Davico, Bierbaum, et al., 1995
Davico, G.E.; Bierbaum, V.M.; Depuy, C.H.; Ellison, G.B.; Squires, R.R., The C-H bond energy of benzene, J. Am. Chem. Soc., 1995, 117, 9, 2590, https://doi.org/10.1021/ja00114a023 . [all data]

Ervin and DeTuro, 2002
Ervin, K.M.; DeTuro, V.F., Anchoring the gas-phase acidity scale, J. Phys. Chem. A, 2002, 106, 42, 9947-9956, https://doi.org/10.1021/jp020594n . [all data]

Alecu, Gao, et al., 2007
Alecu, I.M.; Gao, Y.D.; Hsieh, P.C.; Sand, J.P.; Ors, A.; McLeod, A.; Marshall, P., Studies of the kinetics and thermochemistry of the forward and reverse reaction Cl+C6H6=HCl+C6H5, J. Phys. Chem. A, 2007, 111, 19, 3970-3976, https://doi.org/10.1021/jp067212o . [all data]

Gunion, Gilles, et al., 1992
Gunion, R.F.; Gilles, M.K.; Polak, M.L.; Lineberger, W.C., Ultraviolet Photoelectron Spectroscopy of the Phenide, Benzyl, and Phenoxide Anions., Int. J. Mass Spectrom. Ion Proc., 1992, 117, 601, https://doi.org/10.1016/0168-1176(92)80115-H . [all data]

Meot-ner and Sieck, 1986
Meot-ner, M.; Sieck, L.W., Relative acidities of water and methanol, and the stabilities of the dimer adducts, J. Phys. Chem., 1986, 90, 6687. [all data]

Graul and Squires, 1990
Graul, S.T.; Squires, R.R., Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions, J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007 . [all data]

Bohme and Young, 1971
Bohme, D.K.; Young, L.B., Electron affinities from thermal proton transfer reactions: C6H5 and C6H5CH2, Can. J. Chem., 1971, 49, 2918. [all data]

Bartmess and McIver Jr., 1979
Bartmess, J.E.; McIver Jr., The Gas Phase Acidity Scale in Gas Phase Ion Chemistry, Gas Phase Ion Chemistry, V. 2, M.T. Bowers, Ed., Academic Press, NY, 1979, Ch. 11, Elsevier, 1979. [all data]

Hiraoka, Fujimaki, et al., 1991
Hiraoka, K.; Fujimaki, S.; Aruga, K.; Yamabe, S., Stability and Structure of Benzene Dimer Cation (C6H6)2+, J. Chem. Phys., 1991, 95, 11, 8413, https://doi.org/10.1063/1.461270 . [all data]

Meot-Ner (Mautner), Hamlet, et al., 1978
Meot-Ner (Mautner), M.; Hamlet, P.; Hunter, E.P.; Field, F.H., Bonding Energies in Association Ions of Aromatic Molecules. Correlations with Ionization Energies, J. Am. Chem. Soc., 1978, 100, 17, 5466, https://doi.org/10.1021/ja00485a034 . [all data]

Field, Hamlet, et al., 1969
Field, F.H.; Hamlet, P.; Libby, W.F., Effect of Temperature on the Mass Spectrum of Benzene at High Pressures, J. Am. Chem. Soc., 1969, 91, 11, 2839, https://doi.org/10.1021/ja01039a003 . [all data]

Amicangelo and Armentrout, 2000
Amicangelo, J.C.; Armentrout, P.B., Absolute Binding Energies of Alkali-Metal Cation Complexes with Benzene Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, J. Phys. Chem. A, 2000, 104, 48, 11420, https://doi.org/10.1021/jp002652f . [all data]

Woodin and Beauchamp, 1978
Woodin, R.L.; Beauchamp, J.L., Bonding of Li+ to Lewis Bases in the Gas Phase. Reversals in Methyl Substituent Effects for Different Reference Acids, J. Am. Chem. Soc., 1978, 100, 2, 501, https://doi.org/10.1021/ja00470a024 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Amicangelo and Armentrout, 2001
Amicangelo, J.C.; Armentrout, P.B., Relative and Absolute Bond Dissociation Energies of Sodium Cation Complexes Determined Using Competitive Collision-Induced Dissociation Experiments, Int. J. Mass Spectrom., 2001, 212, 1-3, 301, https://doi.org/10.1016/S1387-3806(01)00494-8 . [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

Guo, Purnell, et al., 1990
Guo, B.C.; Purnell, J.W.; Castleman, A.W., The Clustering Reactions of Benzene with Sodium and Lead Ions, Chem. Phys. Lett., 1990, 168, 2, 155, https://doi.org/10.1016/0009-2614(90)85122-S . [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S., Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems, J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026 . [all data]

Meot-Ner (Mautner), 1989
Meot-Ner (Mautner), M., Ion DChemistry of Ferrocene. Thermochemistry of Ionization and Protonation and Solvent Clustering. Slow and Entropy - Driven Proton - Transfer Kinetics, J. Am. Chem. Soc., 1989, 111, 8, 2830, https://doi.org/10.1021/ja00190a014 . [all data]

Meyer, Khan, et al., 1995
Meyer, F.; Khan, F.A.; Armentrout, P.B., Thermochemistry of Transition Metal Benzene complexes: Binding energies of M(C6H6)x+ (x = 1,2) for M = Ti to Cu, J. Am. Chem. Soc., 1995, 117, 38, 9740, https://doi.org/10.1021/ja00143a018 . [all data]

Kemper, Bushnell, et al., 1993
Kemper, P.R.; Bushnell, J.; Von Koppen, P.; Bowers, M.T., Binding Energies of Co+(H2/CH4/C2H6)1,2,3 Clusters, J. Phys. Chem., 1993, 97, 9, 1810, https://doi.org/10.1021/j100111a016 . [all data]

Ernstberger, Krause, et al., 1990
Ernstberger, B.; Krause, H.; Kiermeier, A.; Neusser, H.J., Multiphoton ionization and dissociation of mixed van der Waals clusters in a linear reflectron time-of-flight mass spectrometer, J. Chem. Phys., 1990, 92, 9, 5285, https://doi.org/10.1063/1.458603 . [all data]

Ruhl, Bisling, et al., 1986
Ruhl, E.; Bisling, P.G.F.; Brutschy, B.; Baumgartel, H., Photoionization of Aromatic van der Waals Complexes in a Supersonic Jet, Chem. Phys. Lett., 1986, 126, 3-4, 232, https://doi.org/10.1016/S0009-2614(86)80075-6 . [all data]

Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M., Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives, J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034 . [all data]

Searles and Kebarle, 1969
Searles, S.K.; Kebarle, P., Hydration of the Potassium Ion in the Gas Phase: Enthalpies and Entropies of Hydration Reactions K+(H2O)n-1 + H2O = K+(H2O)n for n=1 to n=6, Can. J. Chem., 1969, 47, 14, 2619, https://doi.org/10.1139/v69-432 . [all data]

Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G., Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions, Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103 . [all data]

Lin, Chen, et al., 1997
Lin, C.-Y.; Chen, Q.; Chen, H.; Freiser, B.S., Observing Unimolecular Dissociation of Metastable Ions in FT-ICR: A Novel Application of the Continuous Ejection Technique, J. Phys. Chem. A, 1997, 101, 34, 6023, https://doi.org/10.1021/jp970446a . [all data]

Lin and Dunbar, 1997
Lin, C.-Y.; Dunbar, R.C., Radiative Association Kinetics and Binding Energies of Chromium Ions with Benzene and Benzene Derivatives, Organometallics, 1997, 16, 12, 2691, https://doi.org/10.1021/om960949n . [all data]

Hiraoka, Mizuse, et al., 1987
Hiraoka, K.; Mizuse, S.; Yamabe, S., A Determination of the Stability and Structure of F-(C6H6) and F-(C6F6) Clusters, J. Chem. Phys., 1987, 86, 7, 4102, https://doi.org/10.1063/1.451920 . [all data]

Gapeev and Dunbar, 2002
Gapeev, A.; Dunbar, R.C., Reactivity and Binding Energies of Transition Metal Halide Ions with Benzene, J. Am. Soc. Mass Spectrom., 2002, 13, 5, 477, https://doi.org/10.1016/S1044-0305(02)00373-2 . [all data]

Sen Sharma, Ikuta, et al., 1982
Sen Sharma, D.K.; Ikuta, S.; Kebarle, P., Alkylation of Benzene by Alkyl Cations. Stability of the tert - Butyl Benzenium Ion, Can. J. Chem., 1982, 60, 18, 2325, https://doi.org/10.1139/v82-331 . [all data]

El-Shall and Meot-Ner (Mautner), 1987
El-Shall, M.S.; Meot-Ner (Mautner), M., Ionic Charge Transfer Complexes. 3. Delocalised pi Systems as Electron Acceptors and Donors, J. Phys. Chem., 1987, 91, 5, 1088, https://doi.org/10.1021/j100289a017 . [all data]

Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S., Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes, J. Am. Chem. Soc., 1981, 103, 2791. [all data]

Farid and McMahon, 1978
Farid, R.; McMahon, T.B., Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0 . [all data]

Lee and Squires, 1986
Lee, R.E.; Squires, R.R., Anionic homoaromaticity: A gas phase experimental study, J. Am. Chem. Soc., 1986, 105, 5078. [all data]

Romand and Vodar, 1951
Romand, J.; Vodar, B., Spectres d'absorption du benzene a l'etat vapeur et a l'etat condense dans l'ultraviolet lointain, Compt. Rend., 1951, 233, 930-932. [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, References