Tetraethyllead
- Formula: C8H20Pb
- Molecular weight: 323.4
- IUPAC Standard InChIKey: MRMOZBOQVYRSEM-UHFFFAOYSA-N
- CAS Registry Number: 78-00-2
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Plumbane, tetraethyl-; Lead tetraethyl; Tetraethylplumbane; TEL; (C2H5)4Pb; Czteroetylek olowiu; NCI-C54988; Tel-tml, reacted; Tetra(methylethyl)lead; Piombo tetra-etile; Rcra waste number P110; Tetraethylolovo; NSC 22314
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: José A. Martinho Simões
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 109.6 ± 5.1 | kJ/mol | Review | Martinho Simões |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
MS - José A. Martinho Simões
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | 53.0 ± 5.0 | kJ/mol | Review | Martinho Simões | MS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -6383.5 ± 2.5 | kJ/mol | CC-RB | Good, Scott, et al., 1956 | Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970.; MS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 464.6 | J/mol*K | N/A | Rabinovich, Nistratov, et al., 1989 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
307.4 | 298.15 | Rabinovich, Nistratov, et al., 1989 | T = 5 to 315 K.; DH |
310.0 | 298.15 | Scott, Good, et al., 1956 | DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
MS - José A. Martinho Simões
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 455.7 | K | N/A | Dibrivnyi, Dolbneva, et al., 1986 | Uncertainty assigned by TRC = 1.5 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 142.94 | K | N/A | Staveley, Warren, et al., 1954 | Uncertainty assigned by TRC = 0.2 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 141.49 | K | N/A | Rabinovich, Nistratov, et al., 1989, 2 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.02 K; TRC |
Ttriple | 139.41 | K | N/A | Rabinovich, Nistratov, et al., 1989, 2 | Metastable crystal phase; Uncertainty assigned by TRC = 0.02 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 56.6 ± 1.0 | kJ/mol | CC-RB | Abraham and Irving, 1980 | Other values for the enthalpy of vaporization have been reported: 56.9 ± 2.5 kJ/mol Buckler and Norrish, 1936 and 56.1 ± 2.1 kJ/mol Scott, 1972.; MS |
ΔvapH° | 56.6 ± 1.0 | kJ/mol | C | Abraham and Irving, 1980, 2 | AC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
57.3 | 326. | Stull, 1947 | Based on data from 311. to 456. K.; AC |
56.3 | 308. | Buckler and Norrish, 1936, 2 | Based on data from 273. to 343. K.; AC |
56.7 | 387. | Jones, Evans, et al., 1935 | Based on data from 351. to 423. K.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
311.6 to 456. | 5.02305 | 1984.384 | -60.506 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
8.791 | 142.94 | Staveley, Warren, et al., 1954, 2 | DH |
9.11 | 141.4 | Domalski and Hearing, 1996 | AC |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
61.50 | 142.94 | Staveley, Warren, et al., 1954, 2 | DH |
Temperature of phase transition
Ttrs (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|
90.8 | crystaline, III | liquid | Rabinovich, Nistratov, et al., 1989 | Glass/supercooled liquid transition.; DH |
Enthalpy of phase transition
ΔHtrs (kJ/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
9.110 | 141.4 | crystaline, II | liquid | Rabinovich, Nistratov, et al., 1989 | DH |
9.091 | 139.41 | crystaline, I | liquid | Rabinovich, Nistratov, et al., 1989 | DH |
Entropy of phase transition
ΔStrs (J/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
64.43 | 141.4 | crystaline, II | liquid | Rabinovich, Nistratov, et al., 1989 | DH |
65.21 | 139.41 | crystaline, I | liquid | Rabinovich, Nistratov, et al., 1989 | DH |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | API 0699 |
NIST MS number | 15241 |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Martinho Simões
Martinho Simões, J.A.,
Private communication (see http://webbook.nist.gov/chemistry/om/). [all data]
Good, Scott, et al., 1956
Good, W.D.; Scott, D.W.; Waddington, G.,
J. Phys. Chem., 1956, 60, 1090. [all data]
Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J.,
Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds
in Academic Press, New York, 1970. [all data]
Rabinovich, Nistratov, et al., 1989
Rabinovich, I.B.; Nistratov, V.P.; Sheiman, M.S.; Karataev, E.N.; Kamelova, G.P.; Feshchenko, I.A.,
Heat capacity, phase transitions, and thermodynamic function of tetraethyllead,
Zhur. Fiz. Khim., 1989, 63, 2520-2524. [all data]
Scott, Good, et al., 1956
Scott, D.W.; Good, W.D.; Waddington, G.,
Tetraethyllead: heat of formation by rotating-bomb calorimetry,
J. Phys. Chem., 1956, 60, 1090-1095. [all data]
Dibrivnyi, Dolbneva, et al., 1986
Dibrivnyi, V.N.; Dolbneva, T.N.; Dikii, M.A.,
Saturated vapor pressure and vaporization enthalpies of aromatic peroxides
in Vses. Konf. po Kalorimetrii i Khim. Termodinamike, 11th, Novosibirsk, Nr 2, p 115, 1986. [all data]
Staveley, Warren, et al., 1954
Staveley, L.A.K.; Warren, J.B.; Paget, H.P.; Dowrick, D.J.,
Some Thermodynamic Properties of Compounds of the Formula MX4 II. Tetraalkyl Compounds,
J. Chem. Soc., 1954, 1954, 1992. [all data]
Rabinovich, Nistratov, et al., 1989, 2
Rabinovich, I.B.; Nistratov, V.P.; Sheiman, M.S.; Karataev, E.N.; Kamelova, G.P.; Feshchenko, I.A.,
Heat capacity, phase transitions, and thermodynamic functions of tetraethyllead,
Zh. Fiz. Khim., 1989, 63, 2520-4. [all data]
Abraham and Irving, 1980
Abraham, M.H.; Irving, R.J.,
J. Chem. Thermodyn., 1980, 12, 539. [all data]
Buckler and Norrish, 1936
Buckler, E.J.; Norrish, R.G.W.,
J. Chem. Soc., 1936, 1567.. [all data]
Scott, 1972
Scott, D.W.,
J. Chem. Thermodyn., 1972, 4, 99. [all data]
Abraham and Irving, 1980, 2
Abraham, M.H.; Irving, R.J.,
Enthalpies of vaporization of tetramethyltin, tetraethyltin, tetra-n-propyltin, and tetraethyl-lead, and a survey of the Group IV tetramethyl and tetraethyl compounds,
The Journal of Chemical Thermodynamics, 1980, 12, 6, 539-544, https://doi.org/10.1016/0021-9614(80)90183-4
. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Buckler and Norrish, 1936, 2
Buckler, E.J.; Norrish, R.G.,
346. The vapour-pressure curve of tetraethyl-lead from 0«65533» to 70«65533»,
J. Chem. Soc., 1936, 1567, https://doi.org/10.1039/jr9360001567
. [all data]
Jones, Evans, et al., 1935
Jones, W.J.; Evans, D.P.; Gulwell, T.; Griffiths, D.C.,
10. Some physical properties of the alkyl compounds of mercury, tin, and lead,
J. Chem. Soc., 1935, 39, https://doi.org/10.1039/jr9350000039
. [all data]
Staveley, Warren, et al., 1954, 2
Staveley, L.A.K.; Warren, J.B.; Paget, H.P.; Dowrick, D.J.,
Some thermodynamic properties of compounds of the formula MX4. Part II. Tetra-alkyl compounds, 1954, J. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tfus Fusion (melting) point Ttriple Triple point temperature Ttrs Temperature of phase transition ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.