1-Propanol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-302.54 ± 0.25kJ/molCcbMosselman and Dekker, 1975ALS
Δfliquid-303.0 ± 1.3kJ/molEqkConnett, 1972ALS
Δfliquid-304.6 ± 0.4kJ/molCcbChao and Rossini, 1965see Rossini, 1934; ALS
Δfliquid-302.5 ± 4.2kJ/molCcbSnelson and Skinner, 1961ALS
Δfliquid-306.3 ± 1.0kJ/molCcbGreen, 1960ALS
Quantity Value Units Method Reference Comment
Δcliquid-2021.31 ± 0.25kJ/molCcbMosselman and Dekker, 1975Corresponding Δfliquid = -302.54 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-2019.4 ± 0.3kJ/molCcbChao and Rossini, 1965see Rossini, 1934; Corresponding Δfliquid = -304.5 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-2021.4 ± 0.75kJ/molCcbSnelson and Skinner, 1961Corresponding Δfliquid = -302.5 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-2017.7 ± 1.0kJ/molCcbGreen, 1960Corresponding Δfliquid = -306.2 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-2032.59kJ/molCcbRichards and Davis, 1920At 291 K; Corresponding Δfliquid = -291.26 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid192.8J/mol*KN/ACounsell, Lees, et al., 1968DH
liquid214.2J/mol*KN/AParks and Huffman, 1926Extrapolation below 90 K, 64.85 J/mol*K.; DH
Quantity Value Units Method Reference Comment
solid,1 bar112.7J/mol*KN/ACounsell, Lees, et al., 1968glass phase; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
144.6298.Korolev, Kukharenko, et al., 1986DH
143.96298.15Tanaka, Toyama, et al., 1986DH
144.44298.15Zegers and Somsen, 1984DH
138.40288.15Benson and D'Arcy, 1982DH
146.88298.15Villamanan, Casanova, et al., 1982DH
141.8293.15Arutyunyan, Bagdasaryan, et al., 1981T = 293 to 353 K. p = 0.1 MPa. Unsmoothed experimental datum given as 2.360 kJ/kg*K. Cp given from 293.25 to 533.15 K for pressure range 10 to 60 MPa.; DH
146.34298.216Kalinowska, Jedlinska, et al., 1980T = 185 to 300 K. Unsmoothed experimental datum.; DH
147.9303.4Griigo'ev, Yanin, et al., 1979T = 303 to 463 K. p = 0.98 bar.; DH
143.77298.15Vesely, Zabransky, et al., 1979DH
149.0298.15Murthy and Subrahmanyam, 1977DH
143.78298.15Vesely, Svoboda, et al., 1977DH
143.87298.15Fortier, Benson, et al., 1976DH
144.062298.15Fortier and Benson, 1976DH
158.6313.2Paz Andrade, Paz, et al., 1970DH
143.8298.15Counsell, Lees, et al., 1968T = 11 to 350 K.; DH
146.1298.Recko, 1968T = 24 to 40°C, equation only.; DH
155.6320.Swietoslawski and Zielenkiewicz, 1960Mean value 21 to 74°C.; DH
140.21303.Eucken and Eigen, 1951T = 303 to 393 K.; DH
145.6298.1Zhdanov, 1941T = 5 to 46°C.; DH
164.8301.2Phillip, 1939DH
136.0270.Mitsukuri and Hara, 1929T = 170 to 270 K.; DH
192.9298.1Parks, Kelley, et al., 1929Extrapolation below 90 K, 43.5 J/mol*K. Revision of previous data.; DH
133.5275.4Parks and Huffman, 1927T = 86 to 275 K. Value is unsmoothed experimental datum.; DH
133.5275.0Parks and Huffman, 1926T = 86 to 275 K. Value is unsmoothed experimental datum.; DH
131.3274.6Gibson, Parks, et al., 1920T = 77 to 274.6 K. Unsmoothed experimental datum.; DH
144.8298.von Reis, 1881T = 289 to 363 K.; DH

Constant pressure heat capacity of solid

Cp,solid (J/mol*K) Temperature (K) Reference Comment
106.3150.Counsell, Lees, et al., 1968glass phase; T = 10 to 150 K.; DH

Phase change data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil370.3 ± 0.5KAVGN/AAverage of 127 out of 139 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus146.7KN/ATschamler, Richter, et al., 1949Uncertainty assigned by TRC = 0.5 K; TRC
Tfus147.KN/ATimmermans, 1935Uncertainty assigned by TRC = 3. K; TRC
Quantity Value Units Method Reference Comment
Ttriple148.75KN/AWilhoit, Chao, et al., 1985Uncertainty assigned by TRC = 0.02 K; TRC
Ttriple148.75KN/ACounsell, Lees, et al., 1968, 2Uncertainty assigned by TRC = 0.02 K; TRC
Ttriple147.0KN/AParks and Huffman, 1926, 2Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Tc536.9 ± 0.8KAVGN/AAverage of 20 out of 25 values; Individual data points
Quantity Value Units Method Reference Comment
Pc52. ± 1.barAVGN/AAverage of 12 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.218l/molN/AGude and Teja, 1995 
Vc0.216l/molN/AZawisza and Vejrosta, 1982Uncertainty assigned by TRC = 0.001 l/mol; Visual; TRC
Quantity Value Units Method Reference Comment
ρc4.58 ± 0.06mol/lAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δvap47. ± 1.kJ/molAVGN/AAverage of 15 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
41.44370.3N/AMajer and Svoboda, 1985 
41.2371.N/AWormald and Vine, 2000AC
35.2423.N/AWormald and Vine, 2000AC
29.4453.N/AWormald and Vine, 2000AC
21.0498.N/AWormald and Vine, 2000AC
11.4528.N/AWormald and Vine, 2000AC
47.0318.N/AAucejo, Gonzalez-Alfaro, et al., 1995Based on data from 303. to 370. K.; AC
42.9375.N/AOrtega, Susial, et al., 1990Based on data from 360. to 377. K.; AC
48.0214.AStephenson and Malanowski, 1987Based on data from 200. to 228. K.; AC
43.5366.AStephenson and Malanowski, 1987Based on data from 356. to 376. K.; AC
42.3384.AStephenson and Malanowski, 1987Based on data from 369. to 407. K.; AC
40.1416.AStephenson and Malanowski, 1987Based on data from 401. to 482. K.; AC
36.5492.AStephenson and Malanowski, 1987Based on data from 478. to 507. K.; AC
46.4 ± 0.1313.CSvoboda, Veselý, et al., 1973AC
45.7 ± 0.1323.CSvoboda, Veselý, et al., 1973AC
44.9 ± 0.1333.CSvoboda, Veselý, et al., 1973AC
44.0 ± 0.1343.CSvoboda, Veselý, et al., 1973AC
43.2 ± 0.1353.CSvoboda, Veselý, et al., 1973AC
42.4 ± 0.1363.CSvoboda, Veselý, et al., 1973AC
49.3290.N/AWilhoit and Zwolinski, 1973Based on data from 275. to 373. K.; AC
44.7348.EBAmbrose, Counsell, et al., 1970Based on data from 333. to 377. K. See also Stephenson and Malanowski, 1987.; AC
46.9307.DTAKemme and Kreps, 1969Based on data from 292. to 370. K.; AC
46.7303.N/AVan Ness, Soczek, et al., 1967Based on data from 288. to 348. K.; AC
40.7420.N/AAmbrose and Townsend, 1963Based on data from 405. to 537. K.; AC
44.3353.EBBiddiscombe, Collerson, et al., 1963Based on data from 338. to 378. K.; AC
44.1358.N/AMathews and McKetta, 1961Based on data from 343. to 385. K.; AC
43.9 ± 0.1343.CMathews and McKetta, 1961AC
42.3 ± 0.1360.CMathews and McKetta, 1961AC
41.2 ± 0.1370.CMathews and McKetta, 1961AC
40.3 ± 0.1378.CMathews and McKetta, 1961AC
39.7 ± 0.1384.CMathews and McKetta, 1961AC
45.5321. to 367.N/AAronovich, Kastorskii, et al., 1959AC
43.2354.N/AWilliamson and Harrison, 1957AC
44.99 ± 0.42333.13VWilliamson and Harrison, 1957, 2ALS

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 298. to 390.
A (kJ/mol) 52.06
α -0.8386
β 0.6888
Tc (K) 536.7
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
333.32 to 377.724.876011441.629-74.299Ambrose and Sprake, 1970Coefficents calculated by NIST from author's data.
292.4 to 370.55.313841690.864-51.804Kemme and Kreps, 1969 
405.46 to 536.714.598711300.491-86.364Ambrose and Townsend, 1963, 2Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
5.372148.75Counsell, Lees, et al., 1968DH
5.4148.7van Miltenburg and van den Berg, 2004AC
5.37148.8Counsell, Lees, et al., 1968, 2AC
5.192147.0Parks and Huffman, 1926DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
36.11148.75Counsell, Lees, et al., 1968DH
35.3147.0Parks and Huffman, 1926DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C3H9O+ + 1-Propanol = (C3H9O+ • 1-Propanol)

By formula: C3H9O+ + C3H8O = (C3H9O+ • C3H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr127.kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; switching reaction(CH3CNH+)CH3CN; Lias, Liebman, et al., 1984, Deakyne, Meot-Ner (Mautner), et al., 1986; M
Δr132.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr112.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; switching reaction(CH3CNH+)CH3CN; Lias, Liebman, et al., 1984, Deakyne, Meot-Ner (Mautner), et al., 1986; M
Δr126.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr94.6kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C2H7O+ + 1-Propanol = (C2H7O+ • 1-Propanol)

By formula: C2H7O+ + C3H8O = (C2H7O+ • C3H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr127.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr119.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr91.2kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C4H11O+ + 1-Propanol = (C4H11O+ • 1-Propanol)

By formula: C4H11O+ + C3H8O = (C4H11O+ • C3H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr133.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr122.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr96.2kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C3H7O- + Hydrogen cation = 1-Propanol

By formula: C3H7O- + H+ = C3H8O

Quantity Value Units Method Reference Comment
Δr1572. ± 5.4kJ/molD-EAEllison, Engleking, et al., 1982gas phase; B
Δr1573. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1574. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Quantity Value Units Method Reference Comment
Δr1545. ± 5.9kJ/molH-TSEllison, Engleking, et al., 1982gas phase; B
Δr1546. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1546. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B

C4H9O- + 1-Propanol = (C4H9O- • 1-Propanol)

By formula: C4H9O- + C3H8O = (C4H9O- • C3H8O)

Quantity Value Units Method Reference Comment
Δr114. ± 12.kJ/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M
Quantity Value Units Method Reference Comment
Δr123.J/mol*KN/ACaldwell, Rozeboom, et al., 1984gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M
Quantity Value Units Method Reference Comment
Δr77.8 ± 8.4kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M

C8H5- + 1-Propanol = (C8H5- • 1-Propanol)

By formula: C8H5- + C3H8O = (C8H5- • C3H8O)

Quantity Value Units Method Reference Comment
Δr94. ± 12.kJ/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M
Quantity Value Units Method Reference Comment
Δr123.J/mol*KN/ACaldwell, Rozeboom, et al., 1984gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M
Quantity Value Units Method Reference Comment
Δr57.7 ± 8.4kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M

C3H7O- + 1-Propanol = (C3H7O- • 1-Propanol)

By formula: C3H7O- + C3H8O = (C3H7O- • C3H8O)

Quantity Value Units Method Reference Comment
Δr119. ± 12.kJ/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M
Quantity Value Units Method Reference Comment
Δr123.J/mol*KN/ACaldwell, Rozeboom, et al., 1984gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M
Quantity Value Units Method Reference Comment
Δr81.2 ± 8.4kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M

Chlorine anion + 1-Propanol = (Chlorine anion • 1-Propanol)

By formula: Cl- + C3H8O = (Cl- • C3H8O)

Quantity Value Units Method Reference Comment
Δr85.4 ± 2.1kJ/molTDAsHiraoka, 1987gas phase; B,B,M
Δr74.1 ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr121.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Δr97.1J/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M
Quantity Value Units Method Reference Comment
Δr48.95kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B
Δr49.0 ± 8.4kJ/molTDAsHiraoka, 1987gas phase; B
Δr45.2 ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M

C3H5O+ + 1-Propanol = (C3H5O+ • 1-Propanol)

By formula: C3H5O+ + C3H8O = (C3H5O+ • C3H8O)

Quantity Value Units Method Reference Comment
Δr90.8kJ/molICRCaldwell, Rozeboom, et al., 1984gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M
Quantity Value Units Method Reference Comment
Δr123.J/mol*KN/ACaldwell, Rozeboom, et al., 1984gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M
Quantity Value Units Method Reference Comment
Δr54.4kJ/molICRCaldwell, Rozeboom, et al., 1984gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M

C3H9Si+ + 1-Propanol = (C3H9Si+ • 1-Propanol)

By formula: C3H9Si+ + C3H8O = (C3H9Si+ • C3H8O)

Quantity Value Units Method Reference Comment
Δr181.kJ/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+))H2O, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr129.J/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+))H2O, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
121.468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+))H2O, Entropy change calculated or estimated; M

C3H9Sn+ + 1-Propanol = (C3H9Sn+ • 1-Propanol)

By formula: C3H9Sn+ + C3H8O = (C3H9Sn+ • C3H8O)

Quantity Value Units Method Reference Comment
Δr149.kJ/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
78.2525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

C5H11O- + 1-Propanol = (C5H11O- • 1-Propanol)

By formula: C5H11O- + C3H8O = (C5H11O- • C3H8O)

Quantity Value Units Method Reference Comment
Δr113. ± 12.kJ/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr76.1 ± 8.4kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B

C3H5O- + 1-Propanol = (C3H5O- • 1-Propanol)

By formula: C3H5O- + C3H8O = (C3H5O- • C3H8O)

Quantity Value Units Method Reference Comment
Δr90. ± 12.kJ/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr54.0 ± 8.4kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B

(C3H9O+ • 71-Propanol) + 1-Propanol = (C3H9O+ • 81-Propanol)

By formula: (C3H9O+ • 7C3H8O) + C3H8O = (C3H9O+ • 8C3H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr46.kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KN/AMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
17.215.PHPMSMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M

(Chlorine anion • 71-Propanol) + 1-Propanol = (Chlorine anion • 81-Propanol)

By formula: (Cl- • 7C3H8O) + C3H8O = (Cl- • 8C3H8O)

Quantity Value Units Method Reference Comment
Δr45.2 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; Estimated entropy; single temperature measurement; B,M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KN/AHiraoka and Mizuse, 1987gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr7.5 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; Estimated entropy; single temperature measurement; B

Fluorine anion + 1-Propanol = (Fluorine anion • 1-Propanol)

By formula: F- + C3H8O = (F- • C3H8O)

Quantity Value Units Method Reference Comment
Δr135. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M
Quantity Value Units Method Reference Comment
Δr106.J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr103. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M

(C3H9O+ • 21-Propanol) + 1-Propanol = (C3H9O+ • 31-Propanol)

By formula: (C3H9O+ • 2C3H8O) + C3H8O = (C3H9O+ • 3C3H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr60.2kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr59.4kJ/molPHPMSHiraoka, Morise, et al., 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr107.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr99.6J/mol*KPHPMSHiraoka, Morise, et al., 1986gas phase; M

(C3H9O+ • 31-Propanol) + 1-Propanol = (C3H9O+ • 41-Propanol)

By formula: (C3H9O+ • 3C3H8O) + C3H8O = (C3H9O+ • 4C3H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr49.8kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr49.0kJ/molPHPMSHiraoka, Morise, et al., 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr104.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr96.2J/mol*KPHPMSHiraoka, Morise, et al., 1986gas phase; M

(C3H9O+ • 1-Propanol) + 1-Propanol = (C3H9O+ • 21-Propanol)

By formula: (C3H9O+ • C3H8O) + C3H8O = (C3H9O+ • 2C3H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr90.4kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr79.1kJ/molPHPMSHiraoka, Morise, et al., 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr131.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr96.2J/mol*KPHPMSHiraoka, Morise, et al., 1986gas phase; M

Propanal + Hydrogen = 1-Propanol

By formula: C3H6O + H2 = C3H8O

Quantity Value Units Method Reference Comment
Δr-84.3 ± 0.4kJ/molCmWiberg, Crocker, et al., 1991liquid phase; solvent: Triglyme; Heat of hydrogenation; ALS
Δr-69.55 ± 0.76kJ/molEqkConnett, 1972gas phase; At 473-524 K; ALS
Δr-65.77 ± 0.67kJ/molChydBuckley and Cox, 1967gas phase; ALS

(Chlorine anion • 21-Propanol) + 1-Propanol = (Chlorine anion • 31-Propanol)

By formula: (Cl- • 2C3H8O) + C3H8O = (Cl- • 3C3H8O)

Quantity Value Units Method Reference Comment
Δr59.4 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr131.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr20. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 31-Propanol) + 1-Propanol = (Chlorine anion • 41-Propanol)

By formula: (Cl- • 3C3H8O) + C3H8O = (Cl- • 4C3H8O)

Quantity Value Units Method Reference Comment
Δr55.6 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr134.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr15. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 41-Propanol) + 1-Propanol = (Chlorine anion • 51-Propanol)

By formula: (Cl- • 4C3H8O) + C3H8O = (Cl- • 5C3H8O)

Quantity Value Units Method Reference Comment
Δr52.7 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr138.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr11. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 51-Propanol) + 1-Propanol = (Chlorine anion • 61-Propanol)

By formula: (Cl- • 5C3H8O) + C3H8O = (Cl- • 6C3H8O)

Quantity Value Units Method Reference Comment
Δr48.5 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr9.6 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 61-Propanol) + 1-Propanol = (Chlorine anion • 71-Propanol)

By formula: (Cl- • 6C3H8O) + C3H8O = (Cl- • 7C3H8O)

Quantity Value Units Method Reference Comment
Δr46.0 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr126.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr7.9 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 1-Propanol) + 1-Propanol = (Chlorine anion • 21-Propanol)

By formula: (Cl- • C3H8O) + C3H8O = (Cl- • 2C3H8O)

Quantity Value Units Method Reference Comment
Δr66.1 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr106.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr34. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(C3H9O+ • 41-Propanol) + 1-Propanol = (C3H9O+ • 51-Propanol)

By formula: (C3H9O+ • 4C3H8O) + C3H8O = (C3H9O+ • 5C3H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr45.6kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr106.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M

(C3H9O+ • 51-Propanol) + 1-Propanol = (C3H9O+ • 61-Propanol)

By formula: (C3H9O+ • 5C3H8O) + C3H8O = (C3H9O+ • 6C3H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr46.4kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M

(C3H9O+ • 61-Propanol) + 1-Propanol = (C3H9O+ • 71-Propanol)

By formula: (C3H9O+ • 6C3H8O) + C3H8O = (C3H9O+ • 7C3H8O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr45.6kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr128.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M

CH6N+ + 1-Propanol = (CH6N+ • 1-Propanol)

By formula: CH6N+ + C3H8O = (CH6N+ • C3H8O)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr92.0kJ/molPHPMSMeot-Ner, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr107.J/mol*KPHPMSMeot-Ner, 1984gas phase; M

Sodium ion (1+) + 1-Propanol = (Sodium ion (1+) • 1-Propanol)

By formula: Na+ + C3H8O = (Na+ • C3H8O)

Quantity Value Units Method Reference Comment
Δr108. ± 4.2kJ/molCIDTArmentrout and Rodgers, 2000RCD
Δr108. ± 4.2kJ/molCIDTRodgers and Armentrout, 1999RCD

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
0.00.CIDTRodgers and Armentrout, 1999RCD

2-Propen-1-ol + Hydrogen = 1-Propanol

By formula: C3H6O + H2 = C3H8O

Quantity Value Units Method Reference Comment
Δr-130.6 ± 1.8kJ/molChydDolliver, Gresham, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -132. ± 1. kJ/mol; At 355°K; ALS

thiophenoxide anion + 1-Propanol = (thiophenoxide anion • 1-Propanol)

By formula: C6H5S- + C3H8O = (C6H5S- • C3H8O)

Quantity Value Units Method Reference Comment
Δr62.8kJ/molPHPMSSieck and Meot-ner, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr109.J/mol*KPHPMSSieck and Meot-ner, 1989gas phase; M

Fluorine anion + 1-Propanol = C3H7D8FO-

By formula: F- + C3H8O = C3H7D8FO-

Quantity Value Units Method Reference Comment
Δr102. ± 8.4kJ/molIMREWilkinson, Szulejko, et al., 1992gas phase; Reported relative to ROH..F-, 0.5 kcal/mol weaker.; B

Magnesium ion (1+) + 1-Propanol = (Magnesium ion (1+) • 1-Propanol)

By formula: Mg+ + C3H8O = (Mg+ • C3H8O)

Quantity Value Units Method Reference Comment
Δr270. ± 20.kJ/molICROperti, Tews, et al., 1988gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M

Propyl gallate + Water = Benzoic acid, 3,4,5-trihydroxy- + 1-Propanol

By formula: C10H12O5 + H2O = C7H6O5 + C3H8O

Quantity Value Units Method Reference Comment
Δr-15.4 ± 6.6kJ/molEqkTewari, Schantz, et al., 1996liquid phase; solvent: Toluene; ALS

1-Propanol + Ethene, 1,1-dichloro-2,2-difluoro- = C5H8Cl2F2O

By formula: C3H8O + C2Cl2F2 = C5H8Cl2F2O

Quantity Value Units Method Reference Comment
Δr-164. ± 2.kJ/molCmKennedy, Lacher, et al., 1969gas phase; ALS

1-Propanol + Nitric acid = Nitric acid, propyl ester + Water

By formula: C3H8O + HNO3 = C3H7NO3 + H2O

Quantity Value Units Method Reference Comment
Δr-21.8kJ/molEqkRubtsov, 1986liquid phase; ALS

Ketene + 1-Propanol = n-Propyl acetate

By formula: C2H2O + C3H8O = C5H10O2

Quantity Value Units Method Reference Comment
Δr-147.8kJ/molCmRice and Greenberg, 1934gas phase; ALS

Lithium ion (1+) + 1-Propanol = (Lithium ion (1+) • 1-Propanol)

By formula: Li+ + C3H8O = (Li+ • C3H8O)

Quantity Value Units Method Reference Comment
Δr171. ± 7.9kJ/molCIDTRodgers and Armentrout, 2000RCD

Maleic anhydride + 1-Propanol = propyl hydrogen maleate

By formula: C4H2O3 + C3H8O = propyl hydrogen maleate

Quantity Value Units Method Reference Comment
Δr-35.kJ/molKinTribunescu, Poraicu, et al., 1978liquid phase; ALS

References

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Mosselman and Dekker, 1975
Mosselman, C.; Dekker, H., Enthalpies of formation of n-alkan-1-ols, J. Chem. Soc. Faraday Trans. 1, 1975, 417-424. [all data]

Connett, 1972
Connett, J.E., Chemical equilibria. 5. Measurement of equilibrium constants for the dehydrogenation of propanol by a vapour flow technique, J. Chem. Thermodyn., 1972, 4, 233-237. [all data]

Chao and Rossini, 1965
Chao, J.; Rossini, F.D., Heats of combustion, formation, and isomerization of nineteen alkanols, J. Chem. Eng. Data, 1965, 10, 374-379. [all data]

Rossini, 1934
Rossini, F.D., Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states, and the energies of their atomic linkages, J. Res. NBS, 1934, 13, 189-197. [all data]

Snelson and Skinner, 1961
Snelson, A.; Skinner, H.A., Heats of combustion: sec-propanol, 1,4-dioxan, 1,3-dioxan and tetrahydropyran, Trans. Faraday Soc., 1961, 57, 2125-2131. [all data]

Green, 1960
Green, J.H.S., Revision of the values of the heats of formation of normal alcohols, Chem. Ind. (London), 1960, 1215-1216. [all data]

Richards and Davis, 1920
Richards, T.W.; Davis, H.S., The heats of combustion of benzene, toluene, aliphatic alcohols, cyclohexanol, and other carbon compounds, J. Am. Chem. Soc., 1920, 42, 1599-1617. [all data]

Counsell, Lees, et al., 1968
Counsell, J.F.; Lees, E.B.; Martin, J.F., Thermodynamic properties of organic oxygen compounds. Part XIX. Low temperature heat capacity and entropy of propan-1-ol, 2-methyl-propan-1-ol, and pentan-1-ol, 1968, J. [all data]

Parks and Huffman, 1926
Parks, G.S.; Huffman, H.M., Thermal data on organic compounds. IV. The heat capacities, entropies and free energies of normal propyl alcohol, ethyl ether and dulcitol, J. Am. Chem. Soc., 1926, 48, 2788-2793. [all data]

Korolev, Kukharenko, et al., 1986
Korolev, V.P.; Kukharenko, V.A.; Krestov, G.A., Specific heat of binary mixtures of aliphatic alcohols with N,N-dimethylformamide and dimethylsulphoxide, Zhur. Fiz. Khim., 1986, 60, 1854-1857. [all data]

Tanaka, Toyama, et al., 1986
Tanaka, R.; Toyama, S.; Murakami, S., Heat capacities of {xCnH2n+1OH+(1-x)C7H16} for n = 1 to 6 at 298.15 K, J. Chem. Thermodynam., 1986, 18, 63-73. [all data]

Zegers and Somsen, 1984
Zegers, H.C.; Somsen, G., Partial molar volumes and heat capacities in (dimethylformamide + an n-alkanol), J. Chem. Thermodynam., 1984, 16, 225-235. [all data]

Benson and D'Arcy, 1982
Benson, G.C.; D'Arcy, P.J., Excess isobaric heat capacities of water - n-alcohol mixtures, J. Chem. Eng. Data, 1982, 27, 439-442. [all data]

Villamanan, Casanova, et al., 1982
Villamanan, M.A.; Casanova, C.; Roux-Desgranges, G.; Grolier, J.-P.E., Thermochemical behavior of mixtures of n-alcohol + aliphatic ether: heat capacities and volumes at 298.15 K, Thermochim. Acta, 1982, 52, 279-283. [all data]

Arutyunyan, Bagdasaryan, et al., 1981
Arutyunyan, G.S.; Bagdasaryan, S.S.; Kerimov, A.M., Experimental investigation of the isobaric heat capacity of n-propyl, n-butyl and n-amyl alcohols at different temperatures and pressures, Izv. Akad. Nauk Azerb. SSr, 1981, (6), 94-97. [all data]

Kalinowska, Jedlinska, et al., 1980
Kalinowska, B.; Jedlinska, J.; Woycicki, W.; Stecki, J., Heat capacities of liquids at temperatures between 90 and 300 K and at atmospheric pressure. I. Method and apparatus, and the heat capacities of n-heptane, n-hexane, and n-propanol, J. Chem. Thermodynam., 1980, 12, 891-896. [all data]

Griigo'ev, Yanin, et al., 1979
Griigo'ev, B.A.; Yanin, G.S.; Rastorguev, Yu.L.; Thermophysical parameters of alcohols, Tr. GIAP, 54, 1979, 57-64. [all data]

Vesely, Zabransky, et al., 1979
Vesely, F.; Zabransky, M.; Svoboda, V.; Pick, J., The use of mixing calorimeter for measuring heat capacities of liquids, Coll. Czech. Chem. Commun., 1979, 44, 3529-3532. [all data]

Murthy and Subrahmanyam, 1977
Murthy, N.M.; Subrahmanyam, S.V., Behaviour of excess heat capacity of aqueous non-electrolytes, Indian J. Pure Appl. Phys., 1977, 15, 485-489. [all data]

Vesely, Svoboda, et al., 1977
Vesely, F.; Svoboda, V.; Pick, J., Heat capacities of some organic liquids determined with the mixing calorimeter, 1st Czech. Conf. Calorimetry (Lect. Short Commun.), 1977, C9-1-C9-4. [all data]

Fortier, Benson, et al., 1976
Fortier, J.-L.; Benson, G.C.; Picker, P., Heat capacities of some organic liquids determined with the Picker flow calorimeter, J. Chem. Thermodynam., 1976, 8, 289-299. [all data]

Fortier and Benson, 1976
Fortier, J.-L.; Benson, G.C., Excess heat capacities of binary liquid mixtures determined with a Picker flow calorimeter, J. Chem. Thermodynam., 1976, 8, 411-423. [all data]

Paz Andrade, Paz, et al., 1970
Paz Andrade, M.I.; Paz, J.M.; Recacho, E., Contribucion a la microcalorimetria de los calores especificos de solidos y liquidos, An. Quim., 1970, 66, 961-967. [all data]

Recko, 1968
Recko, W.M., Excess heat capacity of the binary systems formed by n-propyl alcohol with benzene, mesitylene and cyclohexane, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1968, 16, 549-552. [all data]

Swietoslawski and Zielenkiewicz, 1960
Swietoslawski, W.; Zielenkiewicz, A., Mean specific heat in homologous series of binary and ternary positive azeotropes, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1960, 8, 651-653. [all data]

Eucken and Eigen, 1951
Eucken, A.; Eigen, M., Untersuchung der Assoziationsstruktur in schwerem Wasser und n-Propanol mit Hilfe thermisch-kalorischer Eigenschaften, insbesondere Messungen der spezifischen Wäarmen, Z. Elektrochem., 1951, 55, 343-354. [all data]

Zhdanov, 1941
Zhdanov, A.K., Specific heats of some liquids and azeotropic mixtures, Zhur. Obshch. Khim., 1941, 11, 471-482. [all data]

Phillip, 1939
Phillip, N.M., Adiabatic and isothermal compressibilities of liquids, Proc. Indian Acad. Sci., 1939, A9, 109-120. [all data]

Mitsukuri and Hara, 1929
Mitsukuri, S.; Hara, K., Specific heats of acetone, methyl-, ethyl-, and n-propyl-alcohols at low temperatures, Bull. Chem. Soc. Japan, 1929, 4, 77-81. [all data]

Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M., Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]

Parks and Huffman, 1927
Parks, G.S.; Huffman, H.M., Studies on glass. I. The transition between the glassy and liquid states in the case of some simple organic compounds, J. Phys. Chem., 1927, 31, 1842-1855. [all data]

Gibson, Parks, et al., 1920
Gibson, G.E.; Parks, G.S.; Latimer, W.M., Entropy changes at low temperatures. II. Ethyl and propyl alcohols and their equal molal mixture, J. Am. Chem. Soc., 1920, 42, 1542-1550. [all data]

von Reis, 1881
von Reis, M.A., Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht, Ann. Physik [3], 1881, 13, 447-464. [all data]

Tschamler, Richter, et al., 1949
Tschamler, H.; Richter, E.; Wettig, F., Mixtures of Primry Aliphatic Alcohols with Chlorex and Other Organic Substances. Binary Liquid Mixtures XII., Monatsh. Chem., 1949, 80, 749. [all data]

Timmermans, 1935
Timmermans, J., Researches in Stoichiometry. I. The Heat of Fusion of Organic Compounds., Bull. Soc. Chim. Belg., 1935, 44, 17-40. [all data]

Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Counsell, Lees, et al., 1968, 2
Counsell, J.F.; Lees, E.B.; Martin, J.F., Thermodynamic properties of organic oxygen compounds. Part XIX. Low-temperature heat capacity and entropy of propan-1-ol, 2-methylpropan-1-ol, and pentan-1-ol, J. Chem. Soc., A, 1968, 1819, https://doi.org/10.1039/j19680001819 . [all data]

Parks and Huffman, 1926, 2
Parks, G.S.; Huffman, H.M., Thermal data on organic compounds: IV the heat capacites, entropies, and free energies of normal propyl alcohol, ethyl ether, and dulcitol, J. Am. Chem. Soc., 1926, 48, 2788-93. [all data]

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Zawisza and Vejrosta, 1982
Zawisza, A.; Vejrosta, J., High-pressure liquid-vapor equilibria, critical stat, and p(V, T, x) up to 573.15 K and 5.066 MPa for (heptane + propan-1-ol), J. Chem. Thermodyn., 1982, 14, 239-49. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Wormald and Vine, 2000
Wormald, C.J.; Vine, M.D., Specific enthalpy increments for propan-1-ol at temperatures up to 573.2 K and 11.3 MPa, The Journal of Chemical Thermodynamics, 2000, 32, 3, 329-339, https://doi.org/10.1006/jcht.1999.0594 . [all data]

Aucejo, Gonzalez-Alfaro, et al., 1995
Aucejo, Antonio; Gonzalez-Alfaro, Vicenta; Monton, Juan B.; Vazquez, M. Isabel, Isobaric Vapor-Liquid Equilibria of Trichloroethylene with 1-Propanol and 2-Propanol at 20 and 100 kPa, J. Chem. Eng. Data, 1995, 40, 1, 332-335, https://doi.org/10.1021/je00017a073 . [all data]

Ortega, Susial, et al., 1990
Ortega, Juan; Susial, Pedro; De Alfonso, Casiano, Isobaric vapor-liquid equilibrium of methyl butanoate with ethanol and 1-propanol binary systems, J. Chem. Eng. Data, 1990, 35, 2, 216-219, https://doi.org/10.1021/je00060a037 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Svoboda, Veselý, et al., 1973
Svoboda, V.; Veselý, F.; Holub, R.; Pick, J., Enthalpy data of liquids. II. The dependence of heats of vaporization of methanol, propanol, butanol, cyclohexane, cyclohexene, and benzene on temperature, Collect. Czech. Chem. Commun., 1973, 38, 12, 3539-3543, https://doi.org/10.1135/cccc19733539 . [all data]

Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]

Ambrose, Counsell, et al., 1970
Ambrose, D.; Counsell, J.F.; Davenport, A.J., The use of Chebyshev polynomials for the representation of vapour pressures between the triple point and the critical point, The Journal of Chemical Thermodynamics, 1970, 2, 2, 283-294, https://doi.org/10.1016/0021-9614(70)90093-5 . [all data]

Kemme and Kreps, 1969
Kemme, Herbert R.; Kreps, Saul I., Vapor pressure of primary n-alkyl chlorides and alcohols, J. Chem. Eng. Data, 1969, 14, 1, 98-102, https://doi.org/10.1021/je60040a011 . [all data]

Van Ness, Soczek, et al., 1967
Van Ness, Hendrick C.; Soczek, C.A.; Peloquin, G.L.; Machado, R.L., Thermodynamic excess properties of three alcohol-hydrocarbon systems, J. Chem. Eng. Data, 1967, 12, 2, 217-224, https://doi.org/10.1021/je60033a017 . [all data]

Ambrose and Townsend, 1963
Ambrose, D.; Townsend, R., 681. Thermodynamic properties of organic oxygen compounds. Part IX. The critical properties and vapour pressures, above five atmospheres, of six aliphatic alcohols, J. Chem. Soc., 1963, 3614, https://doi.org/10.1039/jr9630003614 . [all data]

Biddiscombe, Collerson, et al., 1963
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S., 364. Thermodynamic properties of organic oxygen compounds. Part VIII. Purification and vapour pressures of the propyl and butyl alcohols, J. Chem. Soc., 1963, 1954, https://doi.org/10.1039/jr9630001954 . [all data]

Mathews and McKetta, 1961
Mathews, J.F.; McKetta, J.J., THE THERMODYNAMIC PROPERTIES OF n-PROPYL ALCOHOL, J. Phys. Chem., 1961, 65, 5, 758-762, https://doi.org/10.1021/j100823a013 . [all data]

Aronovich, Kastorskii, et al., 1959
Aronovich, Kh.A.; Kastorskii, L.P.; Fedorova, K.F., Zh. Fiz. Khim., 1959, 41, 20. [all data]

Williamson and Harrison, 1957
Williamson, Kenneth D.; Harrison, Roland H., Heats of Vaporization of 1,1,2-Trichloroethane, 1-Propanol, and 2-Propanol; Vapor Heat Capacity of 1,1,2-Trichloroethane, J. Chem. Phys., 1957, 26, 6, 1409, https://doi.org/10.1063/1.1743555 . [all data]

Williamson and Harrison, 1957, 2
Williamson, K.D.; Harrison, R.H., Heats of vaporization of 1,1,2-trichloroethane, 1-propanol, and 2-propanol; vapor heat capacity of 1,1,2-trichloroethane, J. Chem. Phys., 1957, 26, 1409-14. [all data]

Ambrose and Sprake, 1970
Ambrose, D.; Sprake, C.H.S., Thermodynamic properties of organic oxygen compounds XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols, The Journal of Chemical Thermodynamics, 1970, 2, 5, 631-645, https://doi.org/10.1016/0021-9614(70)90038-8 . [all data]

Ambrose and Townsend, 1963, 2
Ambrose, D.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds. Part 9. The Critical Properties and Vapour Pressures, above Five Atmospheres, of Six Aliphatic Alcohols, J. Chem. Soc., 1963, 3614-3625, https://doi.org/10.1039/jr9630003614 . [all data]

van Miltenburg and van den Berg, 2004
van Miltenburg, J. Cees; van den Berg, Gerrit J.K., Heat Capacities and Derived Thermodynamic Functions of 1-Propanol between 10 K and 350 K and of 1-Pentanol between 85 K and 370 K, J. Chem. Eng. Data, 2004, 49, 3, 735-739, https://doi.org/10.1021/je0499768 . [all data]

Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M., Intermolecular Forces in Organic Clusters, J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Deakyne, Meot-Ner (Mautner), et al., 1986
Deakyne, C.A.; Meot-Ner (Mautner), M.; Campbell, C.L.; Hughes, M.G.; Murphy, S.P., Multicomponent Cluster Ions. 1. The Acetonitrile - Water System, J. Chem. Phys., 1986, 90, 4648. [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Ellison, Engleking, et al., 1982
Ellison, G.B.; Engleking, P.C.; Lineberger, W.C., Photoelectron spectroscopy of alkoxide and enolate negative ions, J. Phys. Chem., 1982, 86, 4873. [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Caldwell, Rozeboom, et al., 1984
Caldwell, G.; Rozeboom, M.D.; Kiplinger, J.P.; Bartmess, J.E., Anion-alcohol hydrogen bond strengths in the gas phase, J. Am. Chem. Soc., 1984, 106, 4660. [all data]

Paul and Kebarle, 1990
Paul, G.J.C.; Kebarle, P., Thermodynamics of the Association Reactions OH- - H2O = HOHOH- and CH3O- - CH3OH = CH3OHOCH3- in the Gas Phase, J. Phys. Chem., 1990, 94, 12, 5184, https://doi.org/10.1021/j100375a076 . [all data]

Meot-ner and Sieck, 1986
Meot-ner, M.; Sieck, L.W., Relative acidities of water and methanol, and the stabilities of the dimer adducts, J. Phys. Chem., 1986, 90, 6687. [all data]

Meot-Ner(Mautner), 1986
Meot-Ner(Mautner), M., Comparative Stabilities of Cationic and Anionic Hydrogen-Bonded Networks. Mixed Clusters of Water-Methanol, J. Am. Chem. Soc., 1986, 108, 20, 6189, https://doi.org/10.1021/ja00280a014 . [all data]

Hiraoka, 1987
Hiraoka, K., Relation Between Gas Phase Stepwise and Bulk Solvation of Cl- with Water and Aliphatic Alcohols, Bull. Chem. Soc. Japan, 1987, 60, 7, 2555, https://doi.org/10.1246/bcsj.60.2555 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Hiraoka and Mizuse, 1987
Hiraoka, K.; Mizuse, S., Gas-Phase Solvation of Cl- with H2O, CH3OH, C2H4OH, i-C3H7OH, n-C3H7OH, and t-C4H9OH, Chem. Phys., 1987, 118, 3, 457, https://doi.org/10.1016/0301-0104(87)85078-4 . [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E., A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase, Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Hiraoka, Morise, et al., 1986
Hiraoka, K.; Morise, K.; Nishijima, T.; Nakamura, S.; Nakazato, M.; Ohkuma, K., Gas Phase Ion Equilibria Studies of Protons and Chloride Ions in Propanol and Acetone, Int. J. Mass Spectrom. Ion Proc., 1986, 68, 1-2, 99, https://doi.org/10.1016/0168-1176(86)87071-9 . [all data]

Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M., Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups, J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]

Buckley and Cox, 1967
Buckley, E.; Cox, J.D., Chemical equilibria. Part 2.-Dehydrogenation of propanol and butanol, Trans. Faraday Soc., 1967, 63, 895-901. [all data]

Meot-Ner, 1984
Meot-Ner, (Mautner)M., The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects, J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015 . [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

Rodgers and Armentrout, 1999
Rodgers, M.T.; Armentrout, P.B., Absolute Binding Energies of Sodium Ions to Short-Chain Alcohols, CnH2n+2O, n=1-4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, 1999, 4955. [all data]

Dolliver, Gresham, et al., 1938
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E., Heats of organic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds, J. Am. Chem. Soc., 1938, 60, 440-450. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Sieck and Meot-ner, 1989
Sieck, L.W.; Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 8. RS-..HOR Bond Strengths. Correlation with Acidities., J. Phys. Chem., 1989, 93, 4, 1586, https://doi.org/10.1021/j100341a079 . [all data]

Wilkinson, Szulejko, et al., 1992
Wilkinson, F.E.; Szulejko, J.E.; Allison, C.E.; Mcmahon, T.B., Fourier Transform Ion Cyclotron Resonance Investigation of the Deuterium Isotope Effect on Gas Phase Ion/Molecule Hydrogen Bonding Interactions in Alcohol-Fluoride Adduct Ions, Int. J. Mass Spectrom., 1992, 117, 487-505, https://doi.org/10.1016/0168-1176(92)80110-M . [all data]

Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S., Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques, J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020 . [all data]

Tewari, Schantz, et al., 1996
Tewari, Y.B.; Schantz, M.M.; Rekharsky, M.V.; Goldberg, R.N., Thermodynamics of the hydrolysis of 3,4,5-trihydroxybenzoic acid propyl ester (n-propylgallate) to 3,4,5-trihydroxybenzoic acid (gallic acid) and propan-1-ol in aqueous media and in toluene, J. Chem. Thermodyn., 1996, 28, 171-185. [all data]

Kennedy, Lacher, et al., 1969
Kennedy, M.B.; Lacher, J.R.; Park, J.D., Reaction heats of organic compounds. VI. Heats of addition of some alcohols to 1,1-dichloro-2,2-difluoroethylene, Trans. Faraday Soc., 1969, 65, 1435-1442. [all data]

Rubtsov, 1986
Rubtsov, Yu.I., Thermodynamic calculation of equilibrium in nitration of alcohols, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1986, 19-22. [all data]

Rice and Greenberg, 1934
Rice, F.O.; Greenberg, J., Ketene. III. Heat of formation and heat of reaction with alcohols, J. Am. Chem. Soc., 1934, 38, 2268-2270. [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Tribunescu, Poraicu, et al., 1978
Tribunescu, P.; Poraicu, M.; Merca, E.; Facsko, O., Kinetics of mono-N-propylmaleate synthesis, Bull. Stiint. Teh. Inst. Politeh. "Traian Vuia" Timisoara, Ser. Chim., 1978, 23, 147-151. [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References