Acenaphthylene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas62.91 ± 0.88kcal/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Δfgas63.10kcal/molN/ASadowska, 1966Value computed using ΔfHsolid° value of 193.0±4.0 kj/mol from Sadowska, 1966 and ΔsubH° value of 71.0 kj/mol from Boyd, Christensen, et al., 1965.; DRB
Δfgas61.7 ± 1.4kcal/molCcbBoyd, Christensen, et al., 1965ALS

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
8.45450.Dorofeeva O.V., 1989These statistically calculated values were obtained using force field approximation for polycyclic aromatic hydrocarbons to estimate the needed vibrational frequencies (see also [ Dorofeeva O.V., 1986, Moiseeva N.F., 1990]). These functions are reproduced in the reference book [ Frenkel M., 1994].; GT
11.92100.
17.23150.
23.60200.
33.592273.15
36.99 ± 0.24298.15
37.242300.
49.885400.
60.390500.
68.781600.
75.488700.
80.920800.
85.385900.
89.0971000.
92.2131100.
94.8471200.
97.0891300.
99.0081400.
100.661500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfsolid45.60 ± 0.84kcal/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Δfsolid46.1 ± 1.kcal/molCcbSadowska, 1966ALS
Δfsolid44.7 ± 1.1kcal/molCcbBoyd, Christensen, et al., 1965ALS
Quantity Value Units Method Reference Comment
Δcsolid-1448. ± 1.kcal/molCcbSadowska, 1966Corresponding Δfsolid = 46.1 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcsolid-1446.5 ± 1.1kcal/molCcbBoyd, Christensen, et al., 1965Corresponding Δfsolid = 44.6 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of solid

Cp,solid (cal/mol*K) Temperature (K) Reference Comment
39.77298.Sadowska, Stepniewska, et al., 1969T = 20 to 89°C, equation only; liquid 90 to 150°C, equation only.; DH

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C6H7N+ + Acenaphthylene = (C6H7N+ • Acenaphthylene)

By formula: C6H7N+ + C12H8 = (C6H7N+ • C12H8)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr17.2kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
8.7325.PHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y., Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons, J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]

Sadowska, 1966
Sadowska, K.W., Cieplo tworzenia i uwodornienia acenaftylenu, Przem. Chem., 1966, 45, 66-67. [all data]

Boyd, Christensen, et al., 1965
Boyd, R.H.; Christensen, R.L.; Pua, R., The heats of combustion of acenaphthene, acenaphthylene, and fluoranthene. Strain and delocalization in bridged naphthalenes, J. Am. Chem. Soc., 1965, 87, 3554-3559. [all data]

Dorofeeva O.V., 1989
Dorofeeva O.V., Thermodynamic Properties of Gaseous Polycyclic Aromatic Hydrocarbons Containing Five-Membered Rings. Institute for High Temperatures, USSR Academy of Sciences, Preprint No.1-263 (in Russian), Moscow, 1989. [all data]

Dorofeeva O.V., 1986
Dorofeeva O.V., On calculation of thermodynamic properties of polycyclic aromatic hydrocarbons, Thermochim. Acta, 1986, 102, 59-66. [all data]

Moiseeva N.F., 1990
Moiseeva N.F., Group additivity scheme for calculating the chemical thermodynamic properties of gaseous polycyclic aromatic hydrocarbons containing five-membered rings, Thermochim. Acta, 1990, 168, 179-186. [all data]

Frenkel M., 1994
Frenkel M., Thermodynamics of Organic Compounds in the Gas State, Vol. I, II, Thermodynamics Research Center, College Station, Texas, 1994, 1994. [all data]

Sadowska, Stepniewska, et al., 1969
Sadowska, K.W.; Stepniewska, G.B.; Recko, W.M., Specific heat and enthalpy of fusion of acenaphthene and acenaphthylene, Przem. Chem., 1969, 48, 282-285. [all data]

Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S., Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems, J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References