Cyclopentene
- Formula: C5H8
- Molecular weight: 68.1170
- IUPAC Standard InChIKey: LPIQUOYDBNQMRZ-UHFFFAOYSA-N
- CAS Registry Number: 142-29-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 36. | kJ/mol | Chyd | Allinger, Dodziuk, et al., 1982 | ALS |
ΔfH°gas | 34. | kJ/mol | Eqk | Furuyama, Golden, et al., 1970 | ALS |
ΔfH°gas | 32.6 | kJ/mol | N/A | Labbauf and Rossini, 1961 | Value computed using ΔfHliquid° value of 4.27±0.63 kj/mol from Labbauf and Rossini, 1961 and ΔvapH° value of 28.37 kj/mol from missing citation.; DRB |
ΔfH°gas | 33.2 | kJ/mol | N/A | Epstein, Pitzer, et al., 1949 | Value computed using ΔfHliquid° value of 4.85±0.67 kj/mol from Epstein, Pitzer, et al., 1949 and ΔvapH° value of 28.37 kj/mol from missing citation.; DRB |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 289.66 | J/mol*K | N/A | Beckett C.W., 1948 | GT |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
35.92 | 50. | Dorofeeva O.V., 1986 | Although S(298.15 K) value is 1.6 J/mol*K larger than that obtained from calorimetric data [ Beckett C.W., 1948] and calculated in previous works [ Beckett C.W., 1948, Epstein M.B., 1949, Furuyama S., 1970, Draeger J.A., 1983], it is selected here because of using the most reliable vibrational frequencies in [ Dorofeeva O.V., 1986]. The recommended thermodynamic functions are in good agreement with results of detail force-field calculations [ Lenz T.G., 1989, Lenz T.G., 1990]. Discrepancies with above mentioned calculations amount to 1.6-9.1 and 0.8-6.2 J/mol*K for S(T) and Cp(T), respectively.; GT |
40.37 | 100. | ||
45.72 | 150. | ||
54.74 | 200. | ||
73.82 | 273.15 | ||
81.3 ± 2.0 | 298.15 | ||
81.84 | 300. | ||
112.08 | 400. | ||
138.99 | 500. | ||
161.38 | 600. | ||
179.95 | 700. | ||
195.52 | 800. | ||
208.71 | 900. | ||
219.96 | 1000. | ||
229.60 | 1100. | ||
237.88 | 1200. | ||
245.02 | 1300. | ||
251.19 | 1400. | ||
256.53 | 1500. |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | 4.27 ± 0.63 | kJ/mol | Ccb | Labbauf and Rossini, 1961 | ALS |
ΔfH°liquid | 4.85 ± 0.67 | kJ/mol | Ccb | Epstein, Pitzer, et al., 1949 | Unpubished results; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -3115.2 ± 0.59 | kJ/mol | Ccb | Labbauf and Rossini, 1961 | Corresponding ΔfHºliquid = 4.31 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 201.25 | J/mol*K | N/A | Huffman, Eaton, et al., 1948 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
122.38 | 298.15 | Huffman, Eaton, et al., 1948 | T = 12 to 300 K.; DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -112.7 ± 0.54 | kJ/mol | Chyd | Allinger, Dodziuk, et al., 1982 | liquid phase; solvent: Hexane |
ΔrH° | -112. ± 0.8 | kJ/mol | Chyd | Roth and Lennartz, 1980 | liquid phase; solvent: Cyclohexane |
ΔrH° | -109.0 ± 1.8 | kJ/mol | Chyd | Turner, Jarrett, et al., 1973 | liquid phase; solvent: Acetic acid |
ΔrH° | -110. ± 0.8 | kJ/mol | Chyd | Rogers and McLafferty, 1971 | liquid phase; solvent: Hydrocarbon |
ΔrH° | -111.6 ± 0.3 | kJ/mol | Chyd | Dolliver, Gresham, et al., 1937 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -112.6 ± 0.3 kJ/mol; At 355 °K |
By formula: C5H8 + C2HF3O2 = C7H9F3O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -38.35 ± 0.18 | kJ/mol | Cac | Wiberg, Wasserman, et al., 1985 | liquid phase; solvent: Trifluoroacetic acid; Trifluoroacetolysis |
By formula: C5H8 + Br2 = C5H8Br2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -119.7 ± 2.5 | kJ/mol | Cm | Lister, 1941 | gas phase; Halogenation at 27 C |
By formula: C5H10 + I2 = 2HI + C5H8
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 102.1 | kJ/mol | Eqk | Furuyama, Golden, et al., 1970 | gas phase |
By formula: 2HI + C5H6 = C5H8 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -89.5 | kJ/mol | Eqk | Furuyama, Golden, et al., 1970 | gas phase |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Allinger, Dodziuk, et al., 1982
Allinger, N.L.; Dodziuk, H.; Rogers, D.W.; Naik, S.N.,
Heats of hydrogenation and formation of some 5-membered ring compounds by molecular mechanics calculations and direct measurements,
Tetrahedron, 1982, 38, 1593-1597. [all data]
Furuyama, Golden, et al., 1970
Furuyama, S.; Golden, D.M.; Benson, S.W.,
Thermochemistry of cyclopentene and cyclopentadiene from studies of gas-phase equilibria,
J. Chem. Thermodyn., 1970, 2, 161-169. [all data]
Labbauf and Rossini, 1961
Labbauf, A.; Rossini, F.D.,
Heats of combustion, formation, and hydrogenation of 14 selected cyclomonoolefin hydrocarbons,
J. Phys. Chem., 1961, 65, 476-480. [all data]
Epstein, Pitzer, et al., 1949
Epstein, M.B.; Pitzer, K.S.; Rossini, F.D.,
Heats, equilibrium constants, and free energies of formation of cyclopentene and cyclohexene,
J. Res. NBS, 1949, 42, 379-382. [all data]
Beckett C.W., 1948
Beckett C.W.,
The thermodynamic properties and molecular structure of cyclopentene and cyclohexene,
J. Am. Chem. Soc., 1948, 70, 4227-4230. [all data]
Dorofeeva O.V., 1986
Dorofeeva O.V.,
Thermodynamic properties of twenty-one monocyclic hydrocarbons,
J. Phys. Chem. Ref. Data, 1986, 15, 437-464. [all data]
Epstein M.B., 1949
Epstein M.B.,
Heats, equilibrium constants, and free energies of formation of cyclopentene and cyclohexene,
J. Res. Nat. Bur. Stand., 1949, 42, 379-382. [all data]
Furuyama S., 1970
Furuyama S.,
Thermochemistry of cyclopentene and cyclopentadiene from studies of gas-phase equilibria,
J. Chem. Thermodyn., 1970, 2, 161-169. [all data]
Draeger J.A., 1983
Draeger J.A.,
Chemical thermodynamic properties of molecules that undergo inversion. I. Aniline, methylamine, cyclopropylamine, and cyclopentene,
J. Chem. Thermodyn., 1983, 15, 367-376. [all data]
Lenz T.G., 1989
Lenz T.G.,
Force-field calculations giving accurate conformation, Hf(T), S(T), and Cp(T) for unsaturated acyclic and cyclic hydrocarbons,
J. Phys. Chem., 1989, 93, 1588-1592. [all data]
Lenz T.G., 1990
Lenz T.G.,
Force field calculation of equilibrium thermodynamic properties: Diels-Alder reaction of 1,3-butadiene and ethylene and Diels-Alder dimerization of 1,3-butadiene,
J. Comput. Chem., 1990, 11, 351-360. [all data]
Huffman, Eaton, et al., 1948
Huffman, H.M.; Eaton, M.; Oliver, G.D.,
The heat capacities, heats of transition, heats of fusion and entropies of cyclopentene and cyclohexene,
J. Am. Chem. Soc., 1948, 70, 2911-2914. [all data]
Roth and Lennartz, 1980
Roth, W.R.; Lennartz, H.W.,
Heats of hydrogenation. I. Determination of heats of hydrogenation with an isothermal titration calorimeter,
Chem. Ber., 1980, 113, 1806-1817. [all data]
Turner, Jarrett, et al., 1973
Turner, R.B.; Jarrett, A.D.; Goebel, P.; Mallon, B.J.,
Heats of hydrogenation. 9. Cyclic acetylenes and some miscellaneous olefins,
J. Am. Chem. Soc., 1973, 95, 790-792. [all data]
Rogers and McLafferty, 1971
Rogers, D.W.; McLafferty, F.J.,
A new hydrogen calorimeter. Heats of hydrogenation of allyl and vinyl unsaturation adjacent to a ring,
Tetrahedron, 1971, 27, 3765-3775. [all data]
Dolliver, Gresham, et al., 1937
Dolliver, M.a.; Gresham, T.L.; Kistiakowsky, G.B.; Vaughan, W.E.,
Heats of organic reactions. V. Heats of hydrogenation of various hydrocarbons,
J. Am. Chem. Soc., 1937, 59, 831-841. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Wiberg, Wasserman, et al., 1985
Wiberg, K.B.; Wasserman, D.J.; Martin, E.J.; Murcko, M.A.,
Enthalpies of hydration of alkenes. 3. Cycloalkenes,
J. Am. Chem. Soc., 1985, 107, 6019-6022. [all data]
Lister, 1941
Lister, M.W.,
Heats of organic reactions. X. Heats of bromination of cyclic olefins,
J. Am. Chem. Soc., 1941, 63, 143-149. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid S°gas Entropy of gas at standard conditions S°liquid Entropy of liquid at standard conditions ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.