Ethanol
- Formula: C2H6O
- Molecular weight: 46.0684
- IUPAC Standard InChIKey: LFQSCWFLJHTTHZ-UHFFFAOYSA-N
- CAS Registry Number: 64-17-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Ethyl alcohol; Alcohol; Alcohol anhydrous; Algrain; Anhydrol; Denatured ethanol; Ethyl hydrate; Ethyl hydroxide; Jaysol; Jaysol S; Methylcarbinol; SD Alchol 23-hydrogen; Tecsol; C2H5OH; Absolute ethanol; Cologne spirit; Fermentation alcohol; Grain alcohol; Molasses alcohol; Potato alcohol; Aethanol; Aethylalkohol; Alcohol, dehydrated; Alcool ethylique; Alcool etilico; Alkohol; Cologne spirits; Denatured alcohol CD-10; Denatured alcohol CD-5; Denatured alcohol CD-5a; Denatured alcohol SD-1; Denatured alcohol SD-13a; Denatured alcohol SD-17; Denatured alcohol SD-23a; Denatured alcohol SD-28; Denatured alcohol SD-3a; Denatured alcohol SD-30; Denatured alcohol SD-39b; Denatured alcohol SD-39c; Denatured alcohol SD-40m; Etanolo; Ethanol 200 proof; Ethyl alc; Etylowy alkohol; EtOH; NCI-C03134; Spirits of wine; Spirt; Alkoholu etylowego; Ethyl alcohol anhydrous; SD alcohol 23-hydrogen; UN 1170; Tecsol C; Alcare Hand Degermer; Absolute alcohol; Denatured alcohol; Ethanol, silent spirit; Ethylol; Punctilious ethyl alcohol; SD 3A
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -56.0 ± 0.5 | kcal/mol | AVG | N/A | Average of 9 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°gas | -326.56 ± 0.1 | kcal/mol | Cm | Rossini, 1932 | Flame Calorimetry; Corresponding ΔfHºgas = -66.491 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
8.872 | 50. | Thermodynamics Research Center, 1997 | p=1 bar. Recommended entropies and heat capacities are in close agreement with other statistically calculated values [ Zhuravlev E.Z., 1959, Chermin H.A.G., 1961, Green J.H.S., 1961, Green J.H.S., 1961, 2, Chao J., 1986, Gurvich, Veyts, et al., 1989]. Please also see Chao J., 1986, 2.; GT |
9.967 | 100. | ||
11.22 | 150. | ||
12.43 | 200. | ||
14.69 | 273.15 | ||
15.59 ± 0.033 | 298.15 | ||
15.65 | 300. | ||
19.41 | 400. | ||
22.89 | 500. | ||
25.870 | 600. | ||
28.401 | 700. | ||
30.574 | 800. | ||
32.459 | 900. | ||
34.101 | 1000. | ||
35.535 | 1100. | ||
36.788 | 1200. | ||
37.880 | 1300. | ||
38.838 | 1400. | ||
39.677 | 1500. | ||
41.35 | 1750. | ||
42.59 | 2000. | ||
43.50 | 2250. | ||
44.19 | 2500. | ||
44.7 | 2750. | ||
45.2 | 3000. |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
12.28 ± 0.12 | 200. | Stromsoe E., 1970 | Experimental data [ Bennewitz K., 1938, Eucken A., 1948, Barrow G.M., 1952, Sinke G.C., 1953, Halford J.O., 1957] are collected in ref. [ Green J.H.S., 1961]. Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 1.09 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Please also see Green J.H.S., 1961, Counsell J.F., 1970.; GT |
14.89 ± 0.13 | 279. | ||
14.84 ± 0.10 | 280. | ||
17.48 | 350.01 | ||
18.09 ± 0.26 | 356.55 | ||
17.82 | 360.00 | ||
18.26 ± 0.26 | 361.75 | ||
18.05 | 367.9 | ||
18.16 | 370.01 | ||
18.58 ± 0.26 | 371.85 | ||
18.51 | 380.00 | ||
19.07 ± 0.26 | 387.25 | ||
19.12 ± 0.26 | 388.85 | ||
19.22 | 400.08 | ||
19.60 | 410.16 | ||
19.93 | 422. | ||
20.10 | 425.09 | ||
20.54 ± 0.26 | 433.25 | ||
21.03 | 437. | ||
20.86 ± 0.26 | 443.35 | ||
20.95 | 450.08 | ||
21.78 | 475.12 | ||
21.80 | 476. | ||
22.04 ± 0.26 | 480.45 | ||
23.76 ± 0.26 | 534.35 | ||
24.22 ± 0.26 | 548.75 | ||
24.97 ± 0.26 | 572.25 | ||
25.58 ± 0.26 | 591.25 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -66.1 ± 0.5 | kcal/mol | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -326.86 ± 0.06 | kcal/mol | Ccb | Chao and Rossini, 1965 | see Rossini, 1934; Corresponding ΔfHºliquid = -66.19 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -326.71 ± 0.10 | kcal/mol | Ccb | Green, 1960 | Corresponding ΔfHºliquid = -66.34 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -327.65 | kcal/mol | Ccb | Parks, 1925 | Corresponding ΔfHºliquid = -65.40 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -327.041 | kcal/mol | Ccb | Richards and Davis, 1920 | At 291 K; Corresponding ΔfHºliquid = -66.006 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -327.10 | kcal/mol | Ccb | Emery and Benedict, 1911 | Corresponding ΔfHºliquid = -65.94 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 38.207 | cal/mol*K | N/A | Haida, Suga, et al., 1977 | DH |
S°liquid | 38.530 | cal/mol*K | N/A | Green J.H.S., 1961 | DH |
S°liquid | 38.41 | cal/mol*K | N/A | Kelley, 1929 | DH |
S°liquid | 42.30 | cal/mol*K | N/A | Parks, 1925 | Extrapolation below 90 K, 55.19 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
26.86 | 298.15 | Petrov, Peshekhodov, et al., 1989 | T = 258.15, 278.15, 298.15, 318.15 K.; DH |
26.656 | 298.15 | Andreoli-Ball, Patterson, et al., 1988 | DH |
26.855 | 298.15 | Ogawa and Murakami, 1986 | DH |
26.931 | 298.15 | Tanaka, Toyama, et al., 1986 | DH |
26.413 | 298.15 | Ogawa and Murakami, 1985 | DH |
27.70 | 298.15 | Stephens and Olson, 1984 | T = 266 to 318 K. Cp given as 0.6011 cal/g*K.; DH |
26.929 | 298.15 | Zegers and Somsen, 1984 | DH |
25.829 | 288.15 | Benson and D'Arcy, 1982 | DH |
27.187 | 298.15 | Villamanan, Casanova, et al., 1982 | DH |
26.804 | 298.15 | Brown and Ziegler, 1979 | T = 159 to 306 K. Results as equation only.; DH |
26.840 | 298.15 | Vesely, Zabransky, et al., 1979 | DH |
26.89 | 298.15 | Haida, Suga, et al., 1977 | T = 14 to 300 K. Also glass, supercooled liquid, metastable crystal.; DH |
26.840 | 298.15 | Vesely, Svoboda, et al., 1977 | T = 298 to 318 K.; DH |
26.848 | 298.15 | Fortier, Benson, et al., 1976 | DH |
26.7911 | 298.15 | Fortier and Benson, 1976 | DH |
26.723 | 298.15 | Pedersen, Kay, et al., 1975 | T = 298 to 348 K. Cp(liq) = 98.39 + 0.5368(T/K-273.25) J/mol*K (298 to 348 K).; DH |
28.30 | 313.2 | Paz Andrade, Paz, et al., 1970 | DH |
23.31 | 250. | Nikolaev, Rabinovich, et al., 1967 | T = 80 to 250 K.; DH |
26.7820 | 297.359 | Hwa and Ziegler, 1966 | T = 165 to 304 K. Unsmoothed experimental datum.; DH |
26.831 | 298. | Rabinovich and Nikolaev, 1962 | T = 15 to 55°C.; DH |
26.759 | 298.15 | Green J.H.S., 1961 | T = 16 to 350 K.; DH |
28.39 | 316. | Swietoslawski and Zielenkiewicz, 1960 | Mean value 21 to 66°C.; DH |
27.41 | 297.8 | Mazur, 1940 | T = 174 to 298 K. Unsmoothed experimental datum. Cp(liq) = 0.5437 + 0.001858t + 0.0000098t2 cal/g*K. Cp(298.15 K) = 114.9 J/mol*K, calculated from equation.; DH |
26.70 | 298. | Bykov, 1939 | DH |
24.69 | 298. | Ernst, Watkins, et al., 1936 | DH |
28.375 | 313.15 | Fiock, Ginnings, et al., 1931 | T = 40 to 110°C.; DH |
26.260 | 294.31 | Kelley, 1929 | T = 16 to 298 K. Value is unsmoothed experimental datum.; DH |
25.41 | 270. | Mitsukuri and Hara, 1929 | T = 190 to 270 K.; DH |
38.41 | 298.1 | Parks, Kelley, et al., 1929 | Extrapolation below 90 K, 38.9 J/mol*K. Revision of previous data.; DH |
27.10 | 298.0 | Parks, 1925 | T = 87 to 298 K. Value is unsmoothed experimental datum.; DH |
27.51 | 303. | Willams and Daniels, 1924 | T = 303 to 333 K. Equation only.; DH |
24.47 | 271.4 | Gibson, Parks, et al., 1920 | T = 85 to 271.4 K. Unsmoothed experimental datum. Data also given for the glassy state from 85.9 to 96.3 K.; DH |
26.79 | 298. | von Reis, 1881 | T = 288 to 346 K.; DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
MS - José A. Martinho Simões
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 1 to 50
By formula: C2H7O+ + C2H6O = (C2H7O+ • C2H6O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32.0 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
ΔrH° | 32.2 | kcal/mol | ICR | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 28.5 | cal/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
ΔrS° | 28.5 | cal/mol*K | N/A | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 23.5 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
ΔrG° | 23.7 | kcal/mol | ICR | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
By formula: C2H5O- + C2H6O = (C2H5O- • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.6 ± 1.0 | kcal/mol | TDEq | Meot-Ner and Sieck, 1986 | gas phase; B,M |
ΔrH° | 28.1 ± 2.5 | kcal/mol | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26.8 | cal/mol*K | PHPMS | Meot-Ner and Sieck, 1986 | gas phase; M |
ΔrS° | 29.3 | cal/mol*K | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; switching reaction(CH3O-)CH3OH; Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 19.6 ± 1.6 | kcal/mol | TDEq | Meot-Ner and Sieck, 1986 | gas phase; B |
ΔrG° | 19.0 ± 1.6 | kcal/mol | IMRE | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
ΔrG° | 20.1 | kcal/mol | ICR | McIver, Scott, et al., 1973 | gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; Meot-Ner (Mautner), 1992; M |
C2H5NaO (cr) + 0.5( • 1100) (solution) = (solution) + 0.5 (solution)
By formula: C2H5NaO (cr) + 0.5(H2O4S • 1100H2O) (solution) = C2H6O (solution) + 0.5Na2O4S (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -28.30 ± 0.91 | kcal/mol | RSC | Blanchard, Joly, et al., 1974 | solvent: Sulphuric acid aqueous solution; The reaction enthalpy relies on -2.53 kcal/mol for the enthalpy of solution of EtOH(l) and on 9.97±0.04 for the enthalpy of solution of Na2SO4(cr) Blanchard, Joly, et al., 1974. A value of -117.3 ± 1.4 kcal/mol was derived in Blanchard, Joly, et al., 1974 for the enthalpy of formation. However, this value is affected by a calculation error. Also, the authors have not accounted for the acid dilution (this correction could not be made in the present database, due to lack of information). These problems were also noted in the data compilations Tel'noi and Rabinovich, 1980 and Wagman, Evans W.H., et al., 1982, where the values quoted for the enthalpy of formation, which rely on the experimental data reported in Blanchard, Joly, et al., 1974, are -98.0 ± 1.0 kcal/mol and -98.90 kcal/mol, respectively. See also comments in Liebman, Martinho Simões, et al., 1995; MS |
By formula: Cl- + C2H6O = (Cl- • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.90 ± 0.40 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 17.60 ± 0.50 | kcal/mol | TDAs | Hiraoka, 1987 | gas phase; B,B,M |
ΔrH° | 17.3 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 23.7 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
ΔrS° | 23.1 | cal/mol*K | N/A | Larson and McMahon, 1984 | gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10.65 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 10.5 ± 2.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
ΔrG° | 10.5 ± 2.0 | kcal/mol | TDAs | Hiraoka, 1987 | gas phase; B |
ΔrG° | 10.4 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
10.0 | 295. | ICR | Riveros, 1974 | gas phase; switching reaction(Cl-)CH3OH; Riveros, Breda, et al., 1973; M |
C2H5O- + =
By formula: C2H5O- + H+ = C2H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 379.2 ± 1.0 | kcal/mol | D-EA | Ramond, Davico, et al., 2000 | gas phase; B |
ΔrH° | 378.0 ± 2.0 | kcal/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrH° | 377.4 ± 2.1 | kcal/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 379.10 ± 0.10 | kcal/mol | CIDT | DeTuri and Ervin, 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 372.6 ± 1.1 | kcal/mol | H-TS | Ramond, Davico, et al., 2000 | gas phase; B |
ΔrG° | 371.4 ± 2.1 | kcal/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrG° | 370.8 ± 2.0 | kcal/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
By formula: C2H5O+ + C2H6O = (C2H5O+ • C2H6O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29.5 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26.0 | cal/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 21.7 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
By formula: C3H9O+ + C2H6O = (C3H9O+ • C2H6O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30.5 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 28.6 | cal/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 22.0 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
By formula: C4H9O- + C2H6O = (C4H9O- • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26.6 ± 2.9 | kcal/mol | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.3 | cal/mol*K | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 17.9 ± 2.0 | kcal/mol | IMRE | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
By formula: C3H7O- + C2H6O = (C3H7O- • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.4 ± 2.9 | kcal/mol | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.3 | cal/mol*K | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 18.7 ± 2.0 | kcal/mol | IMRE | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
By formula: C3H9O+ + C2H6O = (C3H9O+ • C2H6O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31.9 | kcal/mol | ICR | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 28.2 | cal/mol*K | N/A | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 23.5 | kcal/mol | ICR | Bomse and Beauchamp, 1981 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M |
By formula: F- + C2H6O = (F- • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32.40 ± 0.70 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 31.5 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
ΔrH° | 32.5 ± 2.2 | kcal/mol | CIDT | DeTuri and Ervin, 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.9 | cal/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 24.74 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 24.1 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
By formula: CN- + C2H6O = (CN- • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.4 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B,M |
ΔrH° | 17.4 ± 3.5 | kcal/mol | IMRE | Larson and McMahon, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.5 | cal/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
ΔrS° | 24.5 | cal/mol*K | N/A | Larson and McMahon, 1987 | gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10.7 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B |
ΔrG° | 10.0 ± 2.3 | kcal/mol | IMRE | Larson and McMahon, 1987 | gas phase; B,M |
By formula: I- + C2H6O = (I- • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.00 ± 0.20 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 12.1 ± 1.0 | kcal/mol | TDAs | Caldwell and Kebarle, 1984 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 18.9 | cal/mol*K | PHPMS | Caldwell and Kebarle, 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 6.11 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 6.4 ± 1.0 | kcal/mol | TDAs | Caldwell and Kebarle, 1984 | gas phase; B |
ΔrG° | 6.0 ± 2.0 | kcal/mol | IMRE | Tanabe, Morgon, et al., 1996 | gas phase; Anchored to H2O..I- of Caldwell and Kebarle, 1984; B |
By formula: C3H9Si+ + C2H6O = (C3H9Si+ • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 42.0 | kcal/mol | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder(CH3)3Si+))H2O, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30.3 | cal/mol*K | N/A | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder(CH3)3Si+))H2O, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
27.9 | 468. | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder(CH3)3Si+))H2O, Entropy change calculated or estimated; M |
By formula: HS- + C2H6O = (HS- • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.30 ± 0.10 | kcal/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B,M |
ΔrH° | 16.2 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 19.0 | cal/mol*K | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
ΔrS° | 19.8 | cal/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10.60 ± 0.40 | kcal/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B |
ΔrG° | 10.3 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B |
By formula: C3H9Sn+ + C2H6O = (C3H9Sn+ • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 34.8 | kcal/mol | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 32.2 | cal/mol*K | N/A | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
17.9 | 525. | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
By formula: C5H11O- + C2H6O = (C5H11O- • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26.3 ± 2.9 | kcal/mol | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 17.6 ± 2.0 | kcal/mol | IMRE | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B |
By formula: (Cl- • 2C2H6O) + C2H6O = (Cl- • 3C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.90 ± 0.70 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 12.8 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.8 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 5.16 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 5.1 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- • C2H6O) + C2H6O = (Cl- • 2C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.30 ± 0.20 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 16.1 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.9 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 7.34 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 8.3 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- • 9C2H6O) + C2H6O = (Cl- • 10C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.9 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; Estimated entropy; single temperature measurement; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25. | cal/mol*K | N/A | Hiraoka and Mizuse, 1987 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1.4 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; Estimated entropy; single temperature measurement; B |
By formula: (Cl- • 8C2H6O) + C2H6O = (Cl- • 9C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.0 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; Estimated entropy; single temperature measurement; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25. | cal/mol*K | N/A | Hiraoka and Mizuse, 1987 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1.5 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; Estimated entropy; single temperature measurement; B |
By formula: CH6N+ + C2H6O = (CH6N+ • C2H6O)
Bond type: Hydrogen bonds of the type NH+-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21.3 | kcal/mol | PHPMS | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25. | cal/mol*K | N/A | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
8.9 | 496. | PHPMS | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
By formula: Na+ + C2H6O = (Na+ • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26.3 ± 1.3 | kcal/mol | CIDC | Amicangelo and Armentrout, 2001 | Anchor NH3=24.41; RCD |
ΔrH° | 24.4 ± 0.9 | kcal/mol | CIDT | Armentrout and Rodgers, 2000 | RCD |
ΔrH° | 24.4 ± 0.9 | kcal/mol | CIDT | Rodgers and Armentrout, 1999 | RCD |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
19.0 | 298. | IMRE | McMahon and Ohanessian, 2000 | Anchor alanine=39.89; RCD |
0.0 | 0. | CIDT | Rodgers and Armentrout, 1999 | RCD |
By formula: (Na+ • C2H6O) + C2H6O = (Na+ • 2C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23.7 ± 1.6 | kcal/mol | CIDC | Amicangelo and Armentrout, 2001 | Anchor NH3=24.41; RCD |
ΔrH° | 23.1 ± 1.1 | kcal/mol | CIDC | Amicangelo and Armentrout, 2001 | Anchor NH3=24.41; RCD |
ΔrH° | 23.7 ± 1.6 | kcal/mol | CIDC | Amicangelo and Armentrout, 2001 | Anchor NH3=24.41; RCD |
ΔrH° | 23.3 ± 1.4 | kcal/mol | CIDC | Amicangelo and Armentrout, 2001 | Anchor NH3=24.41; RCD |
C2H5LiO (cr) + 0.5( • 1100) (solution) = 0.5Li2O4S (solution) + (solution)
By formula: C2H5LiO (cr) + 0.5(H2O4S • 1100H2O) (solution) = 0.5Li2O4S (solution) + C2H6O (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -27.15 ± 0.31 | kcal/mol | RSC | Blanchard, Joly, et al., 1974 | solvent: Sulphuric acid aqueous solution; The reaction enthalpy relies on -2.53 kcal/mol for the enthalpy of solution of EtOH(l) and on -17.5±0.3 for the enthalpy of solution of Li2SO4(cr) Blanchard, Joly, et al., 1974.; MS |
C2H5KO (cr) + 0.5( • 1100) (solution) = (solution) + 0.5K2O4S (solution)
By formula: C2H5KO (cr) + 0.5(H2O4S • 1100H2O) (solution) = C2H6O (solution) + 0.5K2O4S (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -31.62 ± 0.69 | kcal/mol | RSC | Blanchard, Joly, et al., 1974 | solvent: Sulphuric acid aqueous solution; The reaction enthalpy relies on -2.53 kcal/mol for the enthalpy of solution of EtOH(l) and on 35.1±0.1 for the enthalpy of solution of K2SO4(cr) Blanchard, Joly, et al., 1974.; MS |
+ = C2H6BrO-
By formula: Br- + C2H6O = C2H6BrO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.10 ± 0.20 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.20 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 8.8 ± 2.0 | kcal/mol | IMRE | Tanabe, Morgon, et al., 1996 | gas phase; Anchored to H2O..Br- of Hiraoka, Mizure, et al., 19882; B |
By formula: H2 + C2H4O = C2H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -19.44 ± 0.34 | kcal/mol | Chyd | Wiberg, Crocker, et al., 1991 | liquid phase; solvent: Triglyme; ALS |
ΔrH° | -16.51 ± 0.10 | kcal/mol | Chyd | Dolliver, Gresham, et al., 1938 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -16.8 ± 0.1 kcal/mol; At 355 °K; ALS |
By formula: (Cl- • 3C2H6O) + C2H6O = (Cl- • 4C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.0 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.5 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 3.2 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- • 4C2H6O) + C2H6O = (Cl- • 5C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.5 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30.6 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 2.3 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- • 5C2H6O) + C2H6O = (Cl- • 6C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.1 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 31.0 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1.8 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- • 6C2H6O) + C2H6O = (Cl- • 7C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.8 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26.9 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1.7 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- • 7C2H6O) + C2H6O = (Cl- • 8C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.2 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.2 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1.6 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: C2H3O2- + C2H6O = (C2H3O2- • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.7 ± 1.0 | kcal/mol | N/A | Meot-Ner and Sieck, 1986 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.2 | cal/mol*K | PHPMS | Meot-Ner and Sieck, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 11.9 ± 1.6 | kcal/mol | TDAs | Meot-Ner and Sieck, 1986 | gas phase; B |
By formula: C4H8 + C2H6O = C6H14O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -7.65 | kcal/mol | Cm | Sola, Pericas, et al., 1995 | liquid phase; ALS |
ΔrH° | -7.65 | kcal/mol | Kin | Sola, Pericas, et al., 1995 | liquid phase; ALS |
ΔrH° | -14.9 ± 0.5 | kcal/mol | Eqk | Iborra, Izquierdo, et al., 1989 | gas phase; GC; ALS |
By formula: C2H4NO2- + C2H6O = C4H10NO3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.57 ± 0.50 | kcal/mol | TDAs | Nieckarz, Atkins, et al., 2008 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 9.8 ± 1.0 | kcal/mol | TDAs | Nieckarz, Atkins, et al., 2008 | gas phase; B |
+ 2 = C4H12IO2-
By formula: I- + 2C2H6O = C4H12IO2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.50 ± 0.20 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 4.42 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
+ 2 = C4H12BrO2-
By formula: Br- + 2C2H6O = C4H12BrO2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.50 ± 0.60 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 5.72 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
+ 3 = C6H18IO3-
By formula: I- + 3C2H6O = C6H18IO3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.40 ± 0.50 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 3.51 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
+ 3 = C6H18BrO3-
By formula: Br- + 3C2H6O = C6H18BrO3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.50 ± 0.30 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 4.37 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
By formula: C2H6FO- + 2C2H6O = C4H12FO2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.60 ± 0.30 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 12.10 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
By formula: C2H6O + C3H6O2 = C5H10O2 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -5.40 ± 0.10 | kcal/mol | Eqk | Essex and Sandholzer, 1938 | liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -5.627 kcal/mol; ALS |
By formula: C4H12FO2- + 3C2H6O = C6H18FO3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.60 ± 0.10 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.12 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
+ = C8H11O2-
By formula: C6H5O- + C2H6O = C8H11O2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.3 ± 1.0 | kcal/mol | N/A | Meot-Ner and Sieck, 1986 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 11.2 ± 1.6 | kcal/mol | TDAs | Meot-Ner and Sieck, 1986 | gas phase; B |
By formula: C6H5O- + C2H6O = (C6H5O- • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.3 | kcal/mol | PHPMS | Meot-Ner and Sieck, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.0 | cal/mol*K | PHPMS | Meot-Ner and Sieck, 1986 | gas phase; M |
4 (l) + (l) = (l) + 4( • 51.3) (solution)
By formula: 4C2H6O (l) + Cl4Ti (l) = C8H20O4Ti (l) + 4(HCl • 51.3H2O) (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -49.1 ± 1.0 | kcal/mol | RSC | Bradley and Hillyer, 1966 | Please also see Pedley and Rylance, 1977.; MS |
+ = C2H5D6FO-
By formula: F- + C2H6O = C2H5D6FO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 23.7 ± 2.0 | kcal/mol | IMRE | Wilkinson, Szulejko, et al., 1992 | gas phase; Reported relative to ROH..F-, 0.5 kcal/mol weaker.; B |
By formula: Mg+ + C2H6O = (Mg+ • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 63. ± 5. | kcal/mol | ICR | Operti, Tews, et al., 1988 | gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M |
3 + = CNa2O3 + + +
By formula: 3HNaO + C3H5ClO2 = CNa2O3 + C2H6O + ClNa + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -77.27 ± 0.41 | kcal/mol | Cm | Davies, Finch, et al., 1980 | liquid phase; Heat of hydrolysis; ALS |
By formula: C9H16N2O2 + H2O = C4H8O2 + C3H4N2 + C2H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -10.68 ± 0.16 | kcal/mol | Cm | Guthrie and Pike, 1987 | liquid phase; Heat of hydrolysis; ALS |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Rossini, 1932
Rossini, F.D.,
The heats of combustion of methyl and ethyl alcohols,
J. Res. NBS, 1932, 8, 119-139. [all data]
Thermodynamics Research Center, 1997
Thermodynamics Research Center,
Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]
Zhuravlev E.Z., 1959
Zhuravlev E.Z.,
Isotopic effect on thermodynamic functions of some organic deuterocompounds in the ideal gas state,
Tr. Khim. i Khim. Tekhnol., 1959, 2, 475-485. [all data]
Chermin H.A.G., 1961
Chermin H.A.G.,
Thermo data for petrochemicals. Part 28. Gaseous normal alcohols. The important thermo properties are presented for all the gaseous normal alcohols from methanol through n-decanol,
Petrol. Refiner, 1961, 40 (4), 127-130. [all data]
Green J.H.S., 1961
Green J.H.S.,
Thermodynamic properties of organic oxygen compounds. Part 5. Ethyl alcohol,
Trans. Faraday Soc., 1961, 57, 2132-2137. [all data]
Green J.H.S., 1961, 2
Green J.H.S.,
Thermodynamic properties of the normal alcohols C1-C12,
J. Appl. Chem., 1961, 11, 397-404. [all data]
Chao J., 1986
Chao J.,
Ideal gas thermodynamic properties of simple alkanols,
Int. J. Thermophys., 1986, 7, 431-442. [all data]
Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.,
Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]
Chao J., 1986, 2
Chao J.,
Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties,
J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]
Stromsoe E., 1970
Stromsoe E.,
Heat capacity of alcohol vapors at atmospheric pressure,
J. Chem. Eng. Data, 1970, 15, 286-290. [all data]
Bennewitz K., 1938
Bennewitz K.,
Molar heats of vapor organic compounds,
Z. Phys. Chem. (Leipzig), 1938, B39, 126-144. [all data]
Eucken A., 1948
Eucken A.,
Rotational hindrance in ether and alcohol molecules on the basis of heat capacity determinations,
Z. Elektrochem., 1948, 52, 195-204. [all data]
Barrow G.M., 1952
Barrow G.M.,
Heat capacity, gas imperfection, infrared spectra, and internal rotation barriers of ethyl alcohol,
J. Chem. Phys., 1952, 20, 1739-1744. [all data]
Sinke G.C., 1953
Sinke G.C.,
The heat capacity of organic vapors. VIII. Data for some aliphatic alcohols using an improved flow calorimeter requiring only 25 ml of sample,
J. Am. Chem. Soc., 1953, 75, 1815-1818. [all data]
Halford J.O., 1957
Halford J.O.,
Standard heat capacities of gaseous methanol, ethanol, methane and ethane at 279 K by thermal conductivity,
J. Phys. Chem., 1957, 61, 1536-1539. [all data]
Counsell J.F., 1970
Counsell J.F.,
Thermodynamic properties of organic oxygen compounds. 24. Vapor heat capacities and enthalpies of vaporization of ethanol, 2-methyl-1-propanol, and 1-pentanol,
J. Chem. Thermodyn., 1970, 2, 367-372. [all data]
Chao and Rossini, 1965
Chao, J.; Rossini, F.D.,
Heats of combustion, formation, and isomerization of nineteen alkanols,
J. Chem. Eng. Data, 1965, 10, 374-379. [all data]
Rossini, 1934
Rossini, F.D.,
Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states, and the energies of their atomic linkages,
J. Res. NBS, 1934, 13, 189-197. [all data]
Green, 1960
Green, J.H.S.,
Revision of the values of the heats of formation of normal alcohols,
Chem. Ind. (London), 1960, 1215-1216. [all data]
Parks, 1925
Parks, G.S.,
Thermal data on organic compounds I. The heat capacities and free energies of methyl, ethyl and normal-butyl alcohols,
J. Am. Chem. Soc., 1925, 47, 338-345. [all data]
Richards and Davis, 1920
Richards, T.W.; Davis, H.S.,
The heats of combustion of benzene, toluene, aliphatic alcohols, cyclohexanol, and other carbon compounds,
J. Am. Chem. Soc., 1920, 42, 1599-1617. [all data]
Emery and Benedict, 1911
Emery, A.G.; Benedict, F.G.,
The heat of combustion of compounds of physiological importance,
Am. J. Physiol., 1911, 28, 301-307. [all data]
Haida, Suga, et al., 1977
Haida, O.; Suga, H.; Seki, S.,
Calorimetric study of the glassy state. XII. Plural glass-transition phenomena of ethanol,
J. Chem. Thermodynam., 1977, 9, 1133-1148. [all data]
Kelley, 1929
Kelley, K.K.,
The heat capacities of ethyl and hexyl alcohols from 16°K to 298°K and the corresponding entropies and free energies,
J. Am. Chem. Soc., 1929, 51, 779-786. [all data]
Petrov, Peshekhodov, et al., 1989
Petrov, A.N.; Peshekhodov, P.B.; Al'per, G.A.,
Heat capacity of non-aqueous solutions of non-electrolyts with N,N-dimethylformamide as a base, Sbornik Nauch. Trud., Termodin. Rast. neelect., Ivanovo,
Inst. nevod. rast., 1989, Akad. [all data]
Andreoli-Ball, Patterson, et al., 1988
Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, M.,
Heat capacity and corresponding states in alkan-1-ol-n-alkane systems, J. Chem. Soc.,
Faraday Trans. 1, 1988, 84(11), 3991-4012. [all data]
Ogawa and Murakami, 1986
Ogawa, H.; Murakami, S.,
Excess isobaric heat capacities for water + alkanol mixtures at 298.15 K,
Thermochim. Acta, 1986, 109, 145-154. [all data]
Tanaka, Toyama, et al., 1986
Tanaka, R.; Toyama, S.; Murakami, S.,
Heat capacities of {xCnH2n+1OH+(1-x)C7H16} for n = 1 to 6 at 298.15 K,
J. Chem. Thermodynam., 1986, 18, 63-73. [all data]
Ogawa and Murakami, 1985
Ogawa, H.; Murakami, S.,
Flow microcalorimeter for heat capacities of solutions,
Thermochim. Acta, 1985, 88, 255-260. [all data]
Stephens and Olson, 1984
Stephens, M.; Olson, J.D.,
Measurement of excess heat capacities by differential scanning calorimetry,
Thermochim. Acta, 1984, 76, 79-85. [all data]
Zegers and Somsen, 1984
Zegers, H.C.; Somsen, G.,
Partial molar volumes and heat capacities in (dimethylformamide + an n-alkanol),
J. Chem. Thermodynam., 1984, 16, 225-235. [all data]
Benson and D'Arcy, 1982
Benson, G.C.; D'Arcy, P.J.,
Excess isobaric heat capacities of water - n-alcohol mixtures,
J. Chem. Eng. Data, 1982, 27, 439-442. [all data]
Villamanan, Casanova, et al., 1982
Villamanan, M.A.; Casanova, C.; Roux-Desgranges, G.; Grolier, J.-P.E.,
Thermochemical behavior of mixtures of n-alcohol + aliphatic ether: heat capacities and volumes at 298.15 K,
Thermochim. Acta, 1982, 52, 279-283. [all data]
Brown and Ziegler, 1979
Brown, G.N., Jr.; Ziegler, W.T.,
Temperature dependence of excess thermodynamic properties of ethanol + n-heptane and 2-propanol + n-heptane solutions,
J. Chem. Eng. Data, 1979, 24, 319-330. [all data]
Vesely, Zabransky, et al., 1979
Vesely, F.; Zabransky, M.; Svoboda, V.; Pick, J.,
The use of mixing calorimeter for measuring heat capacities of liquids,
Coll. Czech. Chem. Commun., 1979, 44, 3529-3532. [all data]
Vesely, Svoboda, et al., 1977
Vesely, F.; Svoboda, V.; Pick, J.,
Heat capacities of some organic liquids determined with the mixing calorimeter,
1st Czech. Conf. Calorimetry (Lect. Short Commun.), 1977, C9-1-C9-4. [all data]
Fortier, Benson, et al., 1976
Fortier, J.-L.; Benson, G.C.; Picker, P.,
Heat capacities of some organic liquids determined with the Picker flow calorimeter,
J. Chem. Thermodynam., 1976, 8, 289-299. [all data]
Fortier and Benson, 1976
Fortier, J.-L.; Benson, G.C.,
Excess heat capacities of binary liquid mixtures determined with a Picker flow calorimeter,
J. Chem. Thermodynam., 1976, 8, 411-423. [all data]
Pedersen, Kay, et al., 1975
Pedersen, M.J.; Kay, W.B.; Hershey, H.C.,
Excess enthalpies, heat capacities, and excess heat capacities as a function of temperature in liquid mixtures of ethanol + toluene, ethanol + hexamethyldisiloxane, and hexamethyldisiloxane + toluene,
J. Chem. Thermodynam., 1975, 7, 1107-1118. [all data]
Paz Andrade, Paz, et al., 1970
Paz Andrade, M.I.; Paz, J.M.; Recacho, E.,
Contribucion a la microcalorimetria de los calores especificos de solidos y liquidos,
An. Quim., 1970, 66, 961-967. [all data]
Nikolaev, Rabinovich, et al., 1967
Nikolaev, P.N.; Rabinovich, I.B.; Lebedev, B.V.,
Specific heat of H- and D-ethyl alcohol in the interval 80-250K,
Zhur. Fiz. Khim., 1967, 41, 1294-1299. [all data]
Hwa and Ziegler, 1966
Hwa, S.C.P.; Ziegler, W.T.,
Temperature dependence of excess thermodynamic properties of ethanol-methylcyclohexane and ethanol-toluene systems,
J. Phys. Chem., 1966, 70(8), 2572-2593. [all data]
Rabinovich and Nikolaev, 1962
Rabinovich, I.B.; Nikolaev, P.N.,
Isotopic effect in the specific heat of some deutero compounds,
Dokl. Akad. Nauk, 1962, SSSR 142, 1335-1338. [all data]
Swietoslawski and Zielenkiewicz, 1960
Swietoslawski, W.; Zielenkiewicz, A.,
Mean specific heat in homologous series of binary and ternary positive azeotropes,
Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1960, 8, 651-653. [all data]
Mazur, 1940
Mazur, V.J.,
On the specific heat of ethyl alcohol,
Acta Phys. Polon., 1940, 8, 6-11. [all data]
Bykov, 1939
Bykov, V.T.,
Heat of mixing of liquids,
Zhur. Fiz. Khim., 1939, 13, 1013-1019. [all data]
Ernst, Watkins, et al., 1936
Ernst, R.C.; Watkins, C.H.; Ruwe, H.H.,
The physical properties of the ternary system ethyl alcohol-glycerin-water,
J. Phys. Chem., 1936, 40, 627-635. [all data]
Fiock, Ginnings, et al., 1931
Fiock, E.F.; Ginnings, D.C.; Holton, W.B.,
Calorimetric determinations of thermal properties of methyl alcohol, ethyl alcohol, and benzene,
J. Res., 1931, NBS 6, 881-900. [all data]
Mitsukuri and Hara, 1929
Mitsukuri, S.; Hara, K.,
Specific heats of acetone, methyl-, ethyl-, and n-propyl-alcohols at low temperatures,
Bull. Chem. Soc. Japan, 1929, 4, 77-81. [all data]
Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M.,
Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds,
J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]
Willams and Daniels, 1924
Willams, J.W.; Daniels, F.,
The specific heats of certain organic liquids at elevated temperatures,
J. Am. Chem. Soc., 1924, 46, 903-917. [all data]
Gibson, Parks, et al., 1920
Gibson, G.E.; Parks, G.S.; Latimer, W.M.,
Entropy changes at low temperatures. II. Ethyl and propyl alcohols and their equal molal mixture,
J. Am. Chem. Soc., 1920, 42, 1542-1550. [all data]
von Reis, 1881
von Reis, M.A.,
Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht,
Ann. Physik [3], 1881, 13, 447-464. [all data]
Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B.,
Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements,
J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016
. [all data]
Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P.,
Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding,
J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002
. [all data]
Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D.,
Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules,
J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]
Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr.,
Thermochemical data on Ggs-phase ion-molecule association and clustering reactions,
J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]
Bomse and Beauchamp, 1981
Bomse, D.S.; Beauchamp, J.L.,
Slow Multiphoton Excitation as a Probe of Bimolecular and Unimolecular Reaction Energetics. Multiphoton Dissociation of Proton-Bound Alcohol Dimers,
J. Am. Chem. Soc., 1981, 103, 12, 3292, https://doi.org/10.1021/ja00402a011
. [all data]
Meot-Ner and Sieck, 1986
Meot-Ner, M.; Sieck, L.W.,
The ionic hydrogen bond and ion solvation. 5. OH...O- bonds. Gas phase solvation and clustering of alkoxide and carboxylate anions,
J. Am. Chem. Soc., 1986, 108, 7525. [all data]
Caldwell, Rozeboom, et al., 1984
Caldwell, G.; Rozeboom, M.D.; Kiplinger, J.P.; Bartmess, J.E.,
Anion-alcohol hydrogen bond strengths in the gas phase,
J. Am. Chem. Soc., 1984, 106, 4660. [all data]
Paul and Kebarle, 1990
Paul, G.J.C.; Kebarle, P.,
Thermodynamics of the Association Reactions OH- - H2O = HOHOH- and CH3O- - CH3OH = CH3OHOCH3- in the Gas Phase,
J. Phys. Chem., 1990, 94, 12, 5184, https://doi.org/10.1021/j100375a076
. [all data]
Meot-ner and Sieck, 1986
Meot-ner, M.; Sieck, L.W.,
Relative acidities of water and methanol, and the stabilities of the dimer adducts,
J. Phys. Chem., 1986, 90, 6687. [all data]
Meot-Ner(Mautner), 1986
Meot-Ner(Mautner), M.,
Comparative Stabilities of Cationic and Anionic Hydrogen-Bonded Networks. Mixed Clusters of Water-Methanol,
J. Am. Chem. Soc., 1986, 108, 20, 6189, https://doi.org/10.1021/ja00280a014
. [all data]
McIver, Scott, et al., 1973
McIver, R.T., Jr.; Scott, J.A.; Riveros, J.M.,
Effect of solvation on the intrinsic relative acidity of methanol and ethanol,
J. Am. Chem. Soc., 1973, 95, 2706. [all data]
Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M.,
Intermolecular Forces in Organic Clusters,
J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024
. [all data]
Blanchard, Joly, et al., 1974
Blanchard, J.M.; Joly, R.D.; Lettoffe, J.M.; Perachon, G.; Thourey, J.,
J. Chim. Phys. Phys.-Chim. Biol., 1974, 71, 472. [all data]
Tel'noi and Rabinovich, 1980
Tel'noi, V.I.; Rabinovich, I.B.,
Russ. Chem. Rev., 1980, 49, 603. [all data]
Wagman, Evans W.H., et al., 1982
Wagman, D.D.; Evans W.H.; Parker, V.B.; Schumm, R.H.; Halow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L.,
The NBS Tables of Chemical Thermodynamic Properties; J. Phys. Chem. Ref. Data, 1982, 11, Suppl. 2. [all data]
Liebman, Martinho Simões, et al., 1995
Liebman, J.F.; Martinho Simões, J.A.; Slayden, S.W.,
In Lithium Chemistry: A Theoretical and Experimental Overview Wiley: New York, Sapse, A.-M.; Schleyer, P. von Ragué, ed(s)., 1995. [all data]
Bogdanov, Peschke, et al., 1999
Bogdanov, B.; Peschke, M.; Tonner, D.S.; Szulejko, J.E.; McMahon, T.B.,
Stepwise solvation of halides by alcohol molecules in the gas phase,
Int. J. Mass Spectrom., 1999, 187, 707-725, https://doi.org/10.1016/S1387-3806(98)14180-5
. [all data]
Hiraoka, 1987
Hiraoka, K.,
Relation Between Gas Phase Stepwise and Bulk Solvation of Cl- with Water and Aliphatic Alcohols,
Bull. Chem. Soc. Japan, 1987, 60, 7, 2555, https://doi.org/10.1246/bcsj.60.2555
. [all data]
Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria,
J. Am. Chem. Soc., 1984, 106, 517. [all data]
Hiraoka and Mizuse, 1987
Hiraoka, K.; Mizuse, S.,
Gas-Phase Solvation of Cl- with H2O, CH3OH, C2H4OH, i-C3H7OH, n-C3H7OH, and t-C4H9OH,
Chem. Phys., 1987, 118, 3, 457, https://doi.org/10.1016/0301-0104(87)85078-4
. [all data]
Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B.,
Gas phase negative ion chemistry of alkylchloroformates,
Can. J. Chem., 1984, 62, 675. [all data]
Riveros, 1974
Riveros, J.M.,
Formation and Relative Stability of Negative Clustered Ions by Ion Cyclotron Resonance Spectroscopy,
Adv. Mass Spectrom., 1974, 6, 277. [all data]
Riveros, Breda, et al., 1973
Riveros, J.M.; Breda, A.C.; Blair, L.K.,
Formation and relative stability of chloride ion clusters in the gas phase by ICR spectroscopy,
J. Am. Chem. Soc., 1973, 95, 4066. [all data]
Ramond, Davico, et al., 2000
Ramond, T.M.; Davico, G.E.; Schwartz, R.L.; Lineberger, W.C.,
Vibronic structure of alkoxy radicals via photoelectron spectroscopy,
J. Chem. Phys., 2000, 112, 3, 1158-1169, https://doi.org/10.1063/1.480767
. [all data]
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
DeTuri and Ervin, 1999
DeTuri, V.F.; Ervin, K.M.,
Competitive threshold collision-induced dissociation: Gas-phase acidities and bond dissociation energies for a series of alcohols,
J. Phys. Chem. A, 1999, 103, 35, 6911-6920, https://doi.org/10.1021/jp991459m
. [all data]
Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B.,
Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements,
J. Am. Chem. Soc., 1983, 105, 2944. [all data]
Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P.,
Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions,
J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014
. [all data]
Meot-ner, 1988
Meot-ner, M.,
Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-,
J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022
. [all data]
Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids,
J. Am. Chem. Soc., 1987, 109, 6230. [all data]
Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P.,
Hydration of CN-, NO2-, NO3-, and HO- in the gas phase,
Can. J. Chem., 1971, 49, 3308. [all data]
Caldwell and Kebarle, 1984
Caldwell, G.; Kebarle, P.,
Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas phase equilibria measurements,
J. Am. Chem. Soc., 1984, 106, 967. [all data]
Tanabe, Morgon, et al., 1996
Tanabe, F.K.J.; Morgon, N.H.; Riveros, J.M.,
Relative Bromide and Iodide Affinity of Simple Solvent Molecules Determined by FT-ICR,
J. Phys. Chem., 1996, 100, 8, 2862-2866, https://doi.org/10.1021/jp952290p
. [all data]
Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J.,
A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases,
Can. J. Chem., 1986, 74, 59. [all data]
Sieck and Meot-ner, 1989
Sieck, L.W.; Meot-ner, M.,
Ionic Hydrogen Bond and Ion Solvation. 8. RS-..HOR Bond Strengths. Correlation with Acidities.,
J. Phys. Chem., 1989, 93, 4, 1586, https://doi.org/10.1021/j100341a079
. [all data]
Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E.,
A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase,
Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]
Meot-Ner, 1984
Meot-Ner, (Mautner)M.,
The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects,
J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015
. [all data]
Amicangelo and Armentrout, 2001
Amicangelo, J.C.; Armentrout, P.B.,
Relative and Absolute Bond Dissociation Energies of Sodium Cation Complexes Determined Using Competitive Collision-Induced Dissociation Experiments,
Int. J. Mass Spectrom., 2001, 212, 1-3, 301, https://doi.org/10.1016/S1387-3806(01)00494-8
. [all data]
Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T.,
An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory,
J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n
. [all data]
Rodgers and Armentrout, 1999
Rodgers, M.T.; Armentrout, P.B.,
Absolute Binding Energies of Sodium Ions to Short-Chain Alcohols, CnH2n+2O, n=1-4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, 1999, 4955. [all data]
McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G.,
An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions,
Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7
. [all data]
Hiraoka, Mizure, et al., 1988
Hiraoka, K.; Mizure, S.; Yamabe, S.; Nakatsuji, Y.,
Gas Phase Clustering Reactions of CN- and CH2CN- with MeCN,
Chem. Phys. Lett., 1988, 148, 6, 497, https://doi.org/10.1016/0009-2614(88)80320-8
. [all data]
Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M.,
Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups,
J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]
Dolliver, Gresham, et al., 1938
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E.,
Heats of organic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds,
J. Am. Chem. Soc., 1938, 60, 440-450. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Sola, Pericas, et al., 1995
Sola, L.; Pericas, M.A.; Cunill, F.; Tejero, J.,
Thermodynamic and kinetic studies of the liquid phase synthesis of tert-butyl ethyl ether using a reaction calorimeter,
Ind. Eng. Chem. Res., 1995, 34, 3718-3725. [all data]
Iborra, Izquierdo, et al., 1989
Iborra, M.; Izquierdo, J.F.; Tejero, J.; Cunill, F.,
Equilibrium constant for ethyl tert-butyl ether vapor-phase synthesis,
J. Chem. Eng. Data, 1989, 34, 1-5. [all data]
Nieckarz, Atkins, et al., 2008
Nieckarz, R.J.; Atkins, C.G.; McMahon, T.B.,
Effects of Isomerization on the Measured Thermochemical Properties of Deprotonated Glycine/Protic-Solvent Clusters,
Chemphyschem, 2008, 9, 18, 2816-2825, https://doi.org/10.1002/cphc.200800525
. [all data]
Essex and Sandholzer, 1938
Essex, H.; Sandholzer, M.,
The free energy of formation of ethyl propionate,
J. Phys. Chem., 1938, 42, 317-333. [all data]
Bradley and Hillyer, 1966
Bradley, D.C.; Hillyer, M.J.,
Trans. Faraday Soc., 1966, 62, 2367. [all data]
Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J.,
Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]
Wilkinson, Szulejko, et al., 1992
Wilkinson, F.E.; Szulejko, J.E.; Allison, C.E.; Mcmahon, T.B.,
Fourier Transform Ion Cyclotron Resonance Investigation of the Deuterium Isotope Effect on Gas Phase Ion/Molecule Hydrogen Bonding Interactions in Alcohol-Fluoride Adduct Ions,
Int. J. Mass Spectrom., 1992, 117, 487-505, https://doi.org/10.1016/0168-1176(92)80110-M
. [all data]
Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S.,
Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques,
J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020
. [all data]
Davies, Finch, et al., 1980
Davies, R.H.; Finch, A.; Gardner, P.J.,
The standard enthalpy of formation of liquid and gaseous ethylchloroformate (C3H5O2Cl),
J. Chem. Thermodyn., 1980, 12, 291-296. [all data]
Guthrie and Pike, 1987
Guthrie, J.P.; Pike, D.C.,
Hydration of acylimidazoles: tetrahedral intermediates in acylimidazole hydrolysis and nucleophilic attack by imidazole on esters. The question of concerted mechanisms for acyl transfers,
Can. J. Chem., 1987, 65, 1951-1969. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid S°liquid Entropy of liquid at standard conditions T Temperature ΔcH°gas Enthalpy of combustion of gas at standard conditions ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.