Benzene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas19.8 ± 0.2kcal/molReviewRoux, Temprado, et al., 2008There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB
Δfgas19.8kcal/molN/AGood and Smith, 1969Value computed using ΔfHliquid° value of 49.0±0.5 kj/mol from Good and Smith, 1969 and ΔvapH° value of 33.9 kj/mol from Prosen, Gilmont, et al., 1945.; DRB
Δfgas19.82 ± 0.12kcal/molCcbProsen, Gilmont, et al., 1945Hf by Prosen, Johnson, et al., 1946; ALS
Δfgas19.1kcal/molN/ALandrieu, Baylocq, et al., 1929Value computed using ΔfHliquid° value of 46.0 kj/mol from Landrieu, Baylocq, et al., 1929 and ΔvapH° value of 33.9 kj/mol from Prosen, Gilmont, et al., 1945.; DRB

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
7.95250.Thermodynamics Research Center, 1997GT
8.391100.
10.02150.
12.71200.
17.82273.15
19.70298.15
19.84300.
27.132400.
33.305500.
38.262600.
42.251700.
45.519800.
48.236900.
50.5281000.
52.4761100.
54.1401200.
55.5661300.
56.8001400.
57.8661500.
59.9691750.
61.4872000.
62.6082250.
63.4562500.
64.1092750.
64.6203000.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
22.30 ± 0.01333.15Todd S.S., 1978Please also see Montgomery J.B., 1942, Pitzer K.S., 1943, Scott D.W., 1947.; GT
22.90341.60
23.42 ± 0.01348.15
24.85 ± 0.01368.15
25.100370.
25.041371.20
26.00 ± 0.30388.
26.501390.
26.40 ± 0.30393.
27.230402.30
27.32 ± 0.02403.15
27.600410.
28.10 ± 0.30417.
28.40 ± 0.30428.
29.491436.15
29.62 ± 0.02438.15
30.30 ± 0.30463.
31.649471.10
31.77 ± 0.02473.15
31.40 ± 0.30481.
33.33 ± 0.02500.15
34.80 ± 0.02527.15

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid12. ± 0.2kcal/molReviewRoux, Temprado, et al., 2008There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB
Δfliquid11.70 ± 0.13kcal/molCcbGood and Smith, 1969ALS
Δfliquid11.72 ± 0.12kcal/molCcbProsen, Gilmont, et al., 1945Hf by Prosen, Johnson, et al., 1946; ALS
Δfliquid11.0kcal/molCcbLandrieu, Baylocq, et al., 1929ALS
Quantity Value Units Method Reference Comment
Δcliquid-781. ± 4.kcal/molAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
liquid41.410cal/mol*KN/AOliver, Eaton, et al., 1948DH
liquid41.90cal/mol*KN/AHuffman, Parks, et al., 1930Extrapolation below 90 K, 47.49 J/mol*K.; DH
Quantity Value Units Method Reference Comment
solid,1 bar10.89cal/mol*KN/AAhlberg, Blanchard, et al., 1937DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
32.431298.15Grolier, Roux-Desgranges, et al., 1993DH
32.48298.5Czarnota, 1991p = 0.1 MPa. Cp values given for the pressure range 0.1 to 68.1 MPa.; DH
32.414298.15Lainez, Rodrigo, et al., 1989DH
32.177298.15Shiohama, Ogawa, et al., 1988DH
32.445298.15Grolier, Roux-Desgranges, et al., 1987DH
32.173293.15Kalali, Kohler, et al., 1987T = 293.15, 313.15 K.; DH
32.4348298.15Tanaka, 1987DH
33.44322.05Naziev, Bashirov, et al., 1986T = 322.05, 351.15 K. p = 0.1 MPa. Unsmoothed experimental datum given as 1.7915 kJ/kg*K.; DH
32.84303.15Reddy, 1986T = 303.15, 313.15 K.; DH
32.519298.15Ogawa and Murakami, 1985DH
32.4374298.15Tanaka, 1985DH
32.562298.15Gorbunova, Simonov, et al., 1983T = 283.78 to 348.47 K. Cp = 1.3943 - 5.857x10-4T + 5.89x10-6T2 kJ/kg*K. Cp value calculated from equation.; DH
32.62300.Gorbunova, Grigoriev, et al., 1982T = 280 to 353 K. Data also given by equation.; DH
32.43298.15Grolier, Inglese, et al., 1982T = 298.15 K.; DH
32.443298.15Tanaka, 1982Temperatures 293.15, 298.15, 303.15 K.; DH
32.409298.15Wilhelm, Faradjzadeh, et al., 1982DH
31.93293.15Atalla, El-Sharkawy, et al., 1981DH
32.481298.15Vesely, Zabransky, et al., 1979DH
32.412298.15Grolier, Wilhelm, et al., 1978DH
32.481298.15Vesely, Svoboda, et al., 1977T = 298 to 318 K.; DH
32.409298.15Wilhelm, Grolier, et al., 1977DH
32.447298.15Fortier, Benson, et al., 1976DH
32.4474298.15Fortier and Benson, 1976DH
32.43298.15Rajagopal and Subrahmanyam, 1974T = 298.15 to 323.15 K.; DH
32.10298.Deshpande and Bhatagadde, 1971T = 298 to 318 K.; DH
32.48298.15Hyder Khan and Subrahmanyam, 1971T = 298; 313 K.; DH
32.48298.Subrahmanyam and Khan, 1969DH
32.36298.Recko, 1968T = 24 to 40°C, equation only.; DH
31.1298.Pacor, 1967DH
32.17293.Rastorguev and Ganiev, 1967T = 293 to 353 K.; DH
32.337300.Findenegg, Gruber, et al., 1965DH
32.261298.Rabinovich and Nikolaev, 1962T = 10 to 35°C.; DH
32.29316.Swietoslawski and Zielenkiewicz, 1960Mean value 21 to 66°C.; DH
32.60303.Duff and Everett, 1956T = 303 to 353 K.; DH
32.321298.Staveley, Tupman, et al., 1955T = 288 to 347 K.; DH
7.60293.Sieg, Crtzen, et al., 1951DH
32.519298.15Oliver, Eaton, et al., 1948T = 13 to 337 K.; DH
28.4295.Tschamler, 1948DH
31.91298.Kurbatov, 1947T = 9 to 80°C, mean Cp, five temperatures.; DH
32.50298.1Zhdanov, 1941T = 8 to 46°C.; DH
32.371298.2Burlew, 1940T = 281 to 353 K.; DH
31.41287.8Kolosovskii and Udovenko, 1934DH
31.41287.8de Kolossowsky and Udowenko, 1933DH
31.41298.15Ferguson and Miller, 1933T = 293 to 323 K. Data calculated from equation.; DH
32.29298.1Richards and Wallace, 1932T = 293 to 333 K.; DH
34.314323.15Fiock, Ginnings, et al., 1931T = 50 to 110°C.; DH
32.29300.0Huffman, Parks, et al., 1930T = 93 to 300 K. Value is unsmoothed experimental datum.; DH
31.60298.Andrews, Lynn, et al., 1926T = -18 to 110°C.; DH
31.81293.2Williams and Daniels, 1925T = 20 to 60°C.; DH
32.00303.Willams and Daniels, 1924T = 303 to 333 K. Equation only.; DH
32.79298.Dejardin, 1919T = 24 to 50°C.; DH
31.91298.von Reis, 1881T = 292 to 364 K.; DH

Constant pressure heat capacity of solid

Cp,solid (cal/mol*K) Temperature (K) Reference Comment
11.4490.Ahlberg, Blanchard, et al., 1937T = 4 to 93 K.; DH
23.4223.9Aoyama and Kanda, 1935T = 82 to 224 K. Value is unsmoothed experimental datum.; DH
28.30273.Maass and Walbauer, 1925T = 93 to 273 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil353.3 ± 0.1KAVGN/AAverage of 147 out of 183 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus278.64 ± 0.08KAVGN/AAverage of 57 out of 69 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple278.5 ± 0.6KAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Tc562.0 ± 0.8KAVGN/AAverage of 36 out of 41 values; Individual data points
Quantity Value Units Method Reference Comment
Pc48.3 ± 0.4atmAVGN/AAverage of 24 out of 26 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.25 ± 0.03l/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
ρc3.9 ± 0.2mol/lAVGN/AAverage of 12 values; Individual data points
Quantity Value Units Method Reference Comment
Δvap8.10 ± 0.03kcal/molAVGN/AAverage of 10 out of 11 values; Individual data points
Quantity Value Units Method Reference Comment
Δsub10.6kcal/molTE,MEKruif, 1980Based on data from 183. to 197. K.; AC

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
7.342353.3N/AMajer and Svoboda, 1985 
7.93320.N/ALubomska, Banas, et al., 2002Based on data from 305. to 345. K.; AC
8.51258. to 313.GCLiu and Dickhut, 1994AC
8.01311.EBAmbrose, Ewing, et al., 1990Based on data from 296. to 377. K.; AC
7.98307.CDong, Lin, et al., 1988AC
7.91314.CDong, Lin, et al., 1988AC
7.74324.CDong, Lin, et al., 1988AC
7.62332.CDong, Lin, et al., 1988AC
7.50344.CDong, Lin, et al., 1988AC
7.31353.CDong, Lin, et al., 1988AC
8.22294.AStephenson and Malanowski, 1987Based on data from 279. to 377. K.; AC
7.53368.AStephenson and Malanowski, 1987Based on data from 353. to 422. K.; AC
7.22435.AStephenson and Malanowski, 1987Based on data from 420. to 502. K.; AC
7.24516.AStephenson and Malanowski, 1987Based on data from 501. to 562. K.; AC
7.36352.N/ANatarajan, 1983AC
7.29361.N/ANatarajan, 1983AC
7.22366.N/ANatarajan, 1983AC
8.44343.N/ATsonopoulos and Wilson, 1983Based on data from 313. to 373. K.; AC
7.4350.N/ARao and Viswanath, 1977AC
7.89 ± 0.02313.CSvoboda, Veselý, et al., 1973AC
7.70 ± 0.02328.CSvoboda, Veselý, et al., 1973AC
7.60 ± 0.02333.CSvoboda, Veselý, et al., 1973AC
7.50 ± 0.02343.CSvoboda, Veselý, et al., 1973AC
7.39 ± 0.02353.CSvoboda, Veselý, et al., 1973AC
7.79 ± 0.1313.DSCMita, Imai, et al., 1971AC
7.8 ± 0.1328.DSCMita, Imai, et al., 1971AC
7.55 ± 0.1345.DSCMita, Imai, et al., 1971AC
8.15299.N/AForziati, Norris, et al., 1949Based on data from 284. to 354. K.; AC
8.15293.N/AYarym-Agaev, Fedos'ev, et al., 1949AC
8.15297.N/AThomson, 1946Based on data from 282. to 354. K.; AC
7.46294.N/AScott and Brickwedde, 1945AC
8.15303.MMWillingham, Taylor, et al., 1945Based on data from 288. to 354. K.; AC
7.98313.EBSmith, 1941Based on data from 298. to 373. K.; AC
8.25288.N/AStuckey and Saylor, 1940Based on data from 273. to 348. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 293. to 469.
A (kcal/mol) 11.33
α 0.1231
β 0.3602
Tc (K) 562.1
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
333.4 to 373.54.720121660.652-1.461Eon, Pommier, et al., 1971Coefficents calculated by NIST from author's data.
297.9 to 318.0.1402039.165-261.236Deshpande and Pandya, 1967Coefficents calculated by NIST from author's data.
421.56 to 554.84.597911701.07320.806Kalafati, Rasskazov, et al., 1967Coefficents calculated by NIST from author's data.
287.70 to 354.074.012431203.835-53.226Williamham, Taylor, et al., 1945 

Enthalpy of sublimation

ΔsubH (kcal/mol) Temperature (K) Method Reference Comment
9.97258. to 273.N/ALiu and Dickhut, 1994AC
10.8264.AStephenson and Malanowski, 1987Based on data from 223. to 279. K. See also Ha, Morrison, et al., 1976.; AC
10.8278.N/AHessler, 1984AC
12.9 ± 0.2193.N/ADe Kruif and Van Ginkel, 1977AC
11.8 ± 0.1193.N/ADe Kruif and Van Ginkel, 1977AC
10.9279.MMJackowski, 1974Based on data from 221. to 268. K.; AC
10.5261.N/AJones, 1960AC
10.3229.N/AJones, 1960AC
10.7279.N/AMilazzo, 1956AC
11.1282.AStull, 1947Based on data from 263. to 270. K.; AC
9.2303.VWolf and Weghofer, 1938ALS
10.7273.N/Ade Boer, 1936See also Jackowski, 1974.; AC
10.3226.AMündel, 1913Based on data from 214. to 238. K.; AC

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Method Reference Comment
2.3581278.69N/AOliver, Eaton, et al., 1948DH
2.370278.65N/AZiegler and Andrews, 1942DH
2.36278.7CDomalski and Hearing, 1996See also Andrews, Lynn, et al., 1926 and Ziegler and Andrews, 1942.; AC
2.223279.1N/ASmith, 1979DH
2.139278.8N/APacor, 1967DH
2.375278.6N/ATschamler, 1948DH
2.343278.6N/AHuffman, Parks, et al., 1930DH
2.360278.55N/AAndrews, Lynn, et al., 1926DH
2.3901278.64N/AMaass and Walbauer, 1925DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
8.461278.69Oliver, Eaton, et al., 1948DH
8.506278.65Ziegler and Andrews, 1942DH
7.96279.1Smith, 1979DH
7.67278.8Pacor, 1967DH
8.411278.6Huffman, Parks, et al., 1930DH
8.48278.55Andrews, Lynn, et al., 1926DH
8.58278.64Maass and Walbauer, 1925DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Chlorine anion + Benzene = (Chlorine anion • Benzene)

By formula: Cl- + C6H6 = (Cl- • C6H6)

Quantity Value Units Method Reference Comment
Δr6.00 ± 0.46kcal/molN/ATschurl, Ueberfluss, et al., 2007gas phase; B
Δr9.4 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr9.90kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Δr8.7kcal/molPHPMSPaul and Kebarle, 1991gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M
Δr10.4kcal/molPHPMSSunner, Nishizawa, et al., 1981gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr17.9cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr17.cal/mol*KN/APaul and Kebarle, 1991gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M
Δr17.1cal/mol*KN/ALarson and McMahon, 1984, 2gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M
Δr22.cal/mol*KN/ASunner, Nishizawa, et al., 1981gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr4.0 ± 2.6kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B
Δr3.8 ± 1.6kcal/molIMREChowdhury and Kebarle, 1986gas phase; B
Δr4.8 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Δr3.80kcal/molIMREFrench, Ikuta, et al., 1982gas phase; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
3.6300.PHPMSPaul and Kebarle, 1991gas phase; from Ph. D. thesis of S. Chowdhury, Entropy change calculated or estimated; M
3.8300.PHPMSChowdhury and Kebarle, 1986gas phase; M
3.8300.PHPMSSunner, Nishizawa, et al., 1981gas phase; Entropy change calculated or estimated; M

C6H5- + Hydrogen cation = Benzene

By formula: C6H5- + H+ = C6H6

Quantity Value Units Method Reference Comment
Δr401.22 ± 0.50kcal/molG+TSDavico, Bierbaum, et al., 1995gas phase; Revised per Ervin and DeTuro, 2002 change in NH3 acidity. Alecu, Gao, et al., 2007 using thermal methods, agrees with this BDE: 112.8±0.6; value altered from reference due to change in acidity scale; B
Δr401.16 ± 0.21kcal/molD-EAGunion, Gilles, et al., 1992gas phase; B
Δr400.7 ± 2.5kcal/molTDEqMeot-ner and Sieck, 1986gas phase; B
Δr401. ± 10.kcal/molCIDTGraul and Squires, 1990gas phase; B
Δr398.0 ± 5.6kcal/molG+TSBohme and Young, 1971gas phase; B
Quantity Value Units Method Reference Comment
Δr392.40 ± 0.40kcal/molIMREDavico, Bierbaum, et al., 1995gas phase; Revised per Ervin and DeTuro, 2002 change in NH3 acidity. Alecu, Gao, et al., 2007 using thermal methods, agrees with this BDE: 112.8±0.6; value altered from reference due to change in acidity scale; B
Δr390.9 ± 2.0kcal/molTDEqMeot-ner and Sieck, 1986gas phase; B
Δr390.1 ± 6.5kcal/molIMRBBartmess and McIver Jr., 1979gas phase; B
Δr389.2 ± 5.5kcal/molIMRBBohme and Young, 1971gas phase; B

C6H6+ + Benzene = (C6H6+ • Benzene)

By formula: C6H6+ + C6H6 = (C6H6+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr14. ± 8.kcal/molAVGN/AAverage of 7 out of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Δr28.8cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1991gas phase; M
Δr27.cal/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Δr23.cal/mol*KHPMSField, Hamlet, et al., 1969gas phase; M

Lithium ion (1+) + Benzene = (Lithium ion (1+) • Benzene)

By formula: Li+ + C6H6 = (Li+ • C6H6)

Quantity Value Units Method Reference Comment
Δr38.5 ± 3.2kcal/molCIDTAmicangelo and Armentrout, 2000RCD
Δr37.9kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Δr36.5kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr27.5cal/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr29.7kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M

Bromine anion + Benzene = (Bromine anion • Benzene)

By formula: Br- + C6H6 = (Br- • C6H6)

Quantity Value Units Method Reference Comment
Δr9.0 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr17.0cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Δr17.cal/mol*KN/APaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr2.5 ± 1.0kcal/molIMREPaul and Kebarle, 1991gas phase; B
Δr3.9 ± 2.6kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
0.0423.PHPMSPaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M

(Sodium ion (1+) • Benzene) + Benzene = (Sodium ion (1+) • 2Benzene)

By formula: (Na+ • C6H6) + C6H6 = (Na+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr20. ± 1.kcal/molAVGN/AAverage of 7 values; Individual data points

Sodium ion (1+) + Benzene = (Sodium ion (1+) • Benzene)

By formula: Na+ + C6H6 = (Na+ • C6H6)

Quantity Value Units Method Reference Comment
Δr22.8 ± 1.4kcal/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Δr21.1 ± 1.2kcal/molCIDTAmicangelo and Armentrout, 2000RCD
Δr21.1 ± 1.1kcal/molCIDTArmentrout and Rodgers, 2000RCD
Δr28.0kcal/molHPMSGuo, Purnell, et al., 1990gas phase; M
Quantity Value Units Method Reference Comment
Δr31.2cal/mol*KHPMSGuo, Purnell, et al., 1990gas phase; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
15.7298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

C9H13N+ + Benzene = (C9H13N+ • Benzene)

By formula: C9H13N+ + C6H6 = (C9H13N+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr11.2kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
2.6331.PHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

C7H9N+ + Benzene = (C7H9N+ • Benzene)

By formula: C7H9N+ + C6H6 = (C7H9N+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr12.3kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr4.6kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

C8H11N+ + Benzene = (C8H11N+ • Benzene)

By formula: C8H11N+ + C6H6 = (C8H11N+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr10.0kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KN/AMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr2.2kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; Entropy change calculated or estimated; M

C10H10Fe+ + Benzene = (C10H10Fe+ • Benzene)

By formula: C10H10Fe+ + C6H6 = (C10H10Fe+ • C6H6)

Quantity Value Units Method Reference Comment
Δr8.kcal/molPHPMSMeot-Ner (Mautner), 1989gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/AMeot-Ner (Mautner), 1989gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
3.0252.PHPMSMeot-Ner (Mautner), 1989gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M

(Cobalt ion (1+) • Benzene) + Benzene = (Cobalt ion (1+) • 2Benzene)

By formula: (Co+ • C6H6) + C6H6 = (Co+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr39.9 ± 3.3kcal/molCIDTMeyer, Khan, et al., 1995RCD
Quantity Value Units Method Reference Comment
Δr27.8cal/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(490 K); M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
39.9 (+3.2,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M
27.0 (+1.0,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(490 K); M

C7H8+ + Benzene = (C7H8+ • Benzene)

By formula: C7H8+ + C6H6 = (C7H8+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr12.2kcal/molMPIErnstberger, Krause, et al., 1990gas phase; M
Δr5.5kcal/molPIRuhl, Bisling, et al., 1986gas phase; from vIP of perpendicular dimer; M
Δr12.4kcal/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

C2H7O+ + Benzene = (C2H7O+ • Benzene)

By formula: C2H7O+ + C6H6 = (C2H7O+ • C6H6)

Quantity Value Units Method Reference Comment
Δr21.kcal/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr25.cal/mol*KN/ADeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
8.7491.PHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M

(Potassium ion (1+) • Benzene • Water) + Benzene = (Potassium ion (1+) • 2Benzene • Water)

By formula: (K+ • C6H6 • H2O) + C6H6 = (K+ • 2C6H6 • H2O)

Quantity Value Units Method Reference Comment
Δr14.4kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle,switching reaction(K+ 3H2O)C6H6, Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr30.1cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle,switching reaction(K+ 3H2O)C6H6, Searles and Kebarle, 1969; M

(Potassium ion (1+) • 2Water • Benzene) + Water = (Potassium ion (1+) • 3Water • Benzene)

By formula: (K+ • 2H2O • C6H6) + H2O = (K+ • 3H2O • C6H6)

Quantity Value Units Method Reference Comment
Δr11.8kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle,switching reaction(K+)4H2O; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr26.3cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle,switching reaction(K+)4H2O; Searles and Kebarle, 1969; M

(Potassium ion (1+) • Water • Benzene) + Water = (Potassium ion (1+) • 2Water • Benzene)

By formula: (K+ • H2O • C6H6) + H2O = (K+ • 2H2O • C6H6)

Quantity Value Units Method Reference Comment
Δr12.7kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle,switching reaction(K+)3H2O; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr21.4cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle,switching reaction(K+)3H2O; Searles and Kebarle, 1969; M

Iodide + Benzene = (Iodide • Benzene)

By formula: I- + C6H6 = (I- • C6H6)

Quantity Value Units Method Reference Comment
Δr6.1 ± 2.0kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Δr9.1 ± 1.0kcal/molTDAsCaldwell, Masucci, et al., 1989gas phase; B,M
Quantity Value Units Method Reference Comment
Δr14.2cal/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr1.8 ± 2.6kcal/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

C3H3+ + Benzene = (C3H3+ • Benzene)

By formula: C3H3+ + C6H6 = (C3H3+ • C6H6)

Quantity Value Units Method Reference Comment
Δr9.0kcal/molHPMSField, Hamlet, et al., 1969gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr9.cal/mol*KHPMSField, Hamlet, et al., 1969gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr6.kcal/molHPMSField, Hamlet, et al., 1969gas phase; Entropy change is questionable; M

(Potassium ion (1+) • Water • 2Benzene) + Water = (Potassium ion (1+) • 2Water • 2Benzene)

By formula: (K+ • H2O • 2C6H6) + H2O = (K+ • 2H2O • 2C6H6)

Quantity Value Units Method Reference Comment
Δr12.2kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle(K+ 3H2O)C6H6; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr29.4cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; From thermochemical cycle(K+ 3H2O)C6H6; Searles and Kebarle, 1969; M

(C6H6+ • 2Benzene) + Benzene = (C6H6+ • 3Benzene)

By formula: (C6H6+ • 2C6H6) + C6H6 = (C6H6+ • 3C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr7.0kcal/molPHPMSHiraoka, Fujimaki, et al., 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/AHiraoka, Fujimaki, et al., 1991gas phase; Entropy change calculated or estimated; M

(Potassium ion (1+) • Benzene • 2Water) + Benzene = (Potassium ion (1+) • 2Benzene • 2Water)

By formula: (K+ • C6H6 • 2H2O) + C6H6 = (K+ • 2C6H6 • 2H2O)

Quantity Value Units Method Reference Comment
Δr12.8kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+ 3H2O)C6H6; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr33.7cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+ 3H2O)C6H6; Searles and Kebarle, 1969; M

Chromium ion (1+) + Benzene = (Chromium ion (1+) • Benzene)

By formula: Cr+ + C6H6 = (Cr+ • C6H6)

Quantity Value Units Method Reference Comment
Δr40.2kcal/molMIDLin, Chen, et al., 1997RCD
Δr39.2 ± 3.3kcal/molRAKLin and Dunbar, 1997RCD
Δr40.6 ± 2.4kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
40.6 (+2.3,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Potassium ion (1+) • 2Benzene) + Water = (Potassium ion (1+) • Water • 2Benzene)

By formula: (K+ • 2C6H6) + H2O = (K+ • H2O • 2C6H6)

Quantity Value Units Method Reference Comment
Δr13.7kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+ 2H2O)C6H6; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr26.1cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+ 2H2O)C6H6; Searles and Kebarle, 1969; M

(Potassium ion (1+) • Benzene) + Water = (Potassium ion (1+) • Water • Benzene)

By formula: (K+ • C6H6) + H2O = (K+ • H2O • C6H6)

Quantity Value Units Method Reference Comment
Δr18.1kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+ C6H6)C6H6; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr29.9cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+ C6H6)C6H6; Searles and Kebarle, 1969; M

(Potassium ion (1+) • 2Water) + Benzene = (Potassium ion (1+) • Benzene • 2Water)

By formula: (K+ • 2H2O) + C6H6 = (K+ • C6H6 • 2H2O)

Quantity Value Units Method Reference Comment
Δr13.4kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)3H2O; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr24.3cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)3H2O; Searles and Kebarle, 1969; M

(Potassium ion (1+) • 3Water) + Benzene = (Potassium ion (1+) • Benzene • 3Water)

By formula: (K+ • 3H2O) + C6H6 = (K+ • C6H6 • 3H2O)

Quantity Value Units Method Reference Comment
Δr12.6kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)4H2O; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr27.6cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)4H2O; Searles and Kebarle, 1969; M

(Potassium ion (1+) • Water) + Benzene = (Potassium ion (1+) • Benzene • Water)

By formula: (K+ • H2O) + C6H6 = (K+ • C6H6 • H2O)

Quantity Value Units Method Reference Comment
Δr16.8kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)2H2O; Searles and Kebarle, 1969; M
Quantity Value Units Method Reference Comment
Δr27.1cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; switching reaction(K+)2H2O; Searles and Kebarle, 1969; M

(Chromium ion (1+) • Benzene) + Benzene = (Chromium ion (1+) • 2Benzene)

By formula: (Cr+ • C6H6) + C6H6 = (Cr+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr50.7 ± 9.1kcal/molRAKLin and Dunbar, 1997RCD
Δr55.4 ± 4.3kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
55.3 (+4.4,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

Fluorine anion + Benzene = (Fluorine anion • Benzene)

By formula: F- + C6H6 = (F- • C6H6)

Quantity Value Units Method Reference Comment
Δr15.30kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr19.5cal/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr9.40kcal/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

Manganese ion (1+) + Benzene = (Manganese ion (1+) • Benzene)

By formula: Mn+ + C6H6 = (Mn+ • C6H6)

Quantity Value Units Method Reference Comment
Δr34.4kcal/molMIDLin, Chen, et al., 1997RCD
Δr31.8 ± 2.2kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
31.8 (+2.1,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

Vanadium ion (1+) + Benzene = (Vanadium ion (1+) • Benzene)

By formula: V+ + C6H6 = (V+ • C6H6)

Quantity Value Units Method Reference Comment
Δr>55.kcal/molRAKGapeev and Dunbar, 2002RCD
Δr55.9 ± 2.4kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
55.8 (+2.3,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

Iron ion (1+) + Benzene = (Iron ion (1+) • Benzene)

By formula: Fe+ + C6H6 = (Fe+ • C6H6)

Quantity Value Units Method Reference Comment
Δr47.1kcal/molRAKGapeev and Dunbar, 2002RCD
Δr49.5 ± 2.9kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
49.6 (+2.3,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

Titanium ion (1+) + Benzene = (Titanium ion (1+) • Benzene)

By formula: Ti+ + C6H6 = (Ti+ • C6H6)

Quantity Value Units Method Reference Comment
Δr50.9kcal/molRAKGapeev and Dunbar, 2002RCD
Δr61.9 ± 2.2kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
61.8 (+2.1,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Potassium ion (1+) • Benzene) + Benzene = (Potassium ion (1+) • 2Benzene)

By formula: (K+ • C6H6) + C6H6 = (K+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr16.1 ± 1.7kcal/molCIDTAmicangelo and Armentrout, 2000RCD
Δr18.8kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr33.9cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; M

C4H9+ + Benzene = (C4H9+ • Benzene)

By formula: C4H9+ + C6H6 = (C4H9+ • C6H6)

Quantity Value Units Method Reference Comment
Δr22.kcal/molPHPMSSen Sharma, Ikuta, et al., 1982gas phase; forms protonated t-butylbenzene; M
Quantity Value Units Method Reference Comment
Δr49.cal/mol*KPHPMSSen Sharma, Ikuta, et al., 1982gas phase; forms protonated t-butylbenzene; M

(C6H6+ • Benzene) + Benzene = (C6H6+ • 2Benzene)

By formula: (C6H6+ • C6H6) + C6H6 = (C6H6+ • 2C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr7.8 ± 0.5kcal/molPHPMSHiraoka, Fujimaki, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr19.8cal/mol*KPHPMSHiraoka, Fujimaki, et al., 1991gas phase; M

Potassium ion (1+) + Benzene = (Potassium ion (1+) • Benzene)

By formula: K+ + C6H6 = (K+ • C6H6)

Quantity Value Units Method Reference Comment
Δr17.5 ± 0.9kcal/molCIDTAmicangelo and Armentrout, 2000RCD
Δr19.2kcal/molHPMSSunner, Nishizawa, et al., 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr24.6cal/mol*KHPMSSunner, Nishizawa, et al., 1981gas phase; M

C6H7N+ + Benzene = (C6H7N+ • Benzene)

By formula: C6H7N+ + C6H6 = (C6H7N+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr11.9kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr22.6cal/mol*KPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M

C11H10+ + Benzene = (C11H10+ • Benzene)

By formula: C11H10+ + C6H6 = (C11H10+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr9.0kcal/molPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr24.0cal/mol*KPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M

C6H5Cl+ + Benzene = (C6H5Cl+ • Benzene)

By formula: C6H5Cl+ + C6H6 = (C6H5Cl+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr14.0kcal/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

C9H12+ + Benzene = (C9H12+ • Benzene)

By formula: C9H12+ + C6H6 = (C9H12+ • C6H6)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr10.6kcal/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

Nitric oxide anion + Benzene = (Nitric oxide anion • Benzene)

By formula: NO- + C6H6 = (NO- • C6H6)

Quantity Value Units Method Reference Comment
Δr41.1kcal/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

(Iron ion (1+) • Benzene) + Benzene = (Iron ion (1+) • 2Benzene)

By formula: (Fe+ • C6H6) + C6H6 = (Fe+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr44.7 ± 3.8kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
44.7 (+3.9,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Titanium ion (1+) • Benzene) + Benzene = (Titanium ion (1+) • 2Benzene)

By formula: (Ti+ • C6H6) + C6H6 = (Ti+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr60.5 ± 4.3kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
60.4 (+4.4,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Manganese ion (1+) • Benzene) + Benzene = (Manganese ion (1+) • 2Benzene)

By formula: (Mn+ • C6H6) + C6H6 = (Mn+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr48.5 ± 3.8kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
48.4 (+3.9,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Nickel ion (1+) • Benzene) + Benzene = (Nickel ion (1+) • 2Benzene)

By formula: (Ni+ • C6H6) + C6H6 = (Ni+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr35.1 ± 2.9kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
35.1 (+2.8,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(Copper ion (1+) • Benzene) + Benzene = (Copper ion (1+) • 2Benzene)

By formula: (Cu+ • C6H6) + C6H6 = (Cu+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr37.0 ± 2.9kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
37.1 (+2.8,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

(CAS Reg. No. 79431-04-2 • 4294967295Benzene) + Benzene = CAS Reg. No. 79431-04-2

By formula: (CAS Reg. No. 79431-04-2 • 4294967295C6H6) + C6H6 = CAS Reg. No. 79431-04-2

Quantity Value Units Method Reference Comment
Δr21.5 ± 4.2kcal/molTherLee and Squires, 1986gas phase; Between SiH4, tBuOH; value altered from reference due to change in acidity scale; B

Nickel ion (1+) + Benzene = (Nickel ion (1+) • Benzene)

By formula: Ni+ + C6H6 = (Ni+ • C6H6)

Quantity Value Units Method Reference Comment
Δr58.1 ± 2.6kcal/molCIDTMeyer, Khan, et al., 1995RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
58.1 (+2.5,-0.) CIDMeyer, Khan, et al., 1995gas phase; guided ion beam CID; M

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: Tanya L. Myers, Russell G. Tonkyn, Ashley M. Oeck, Tyler O. Danby, John S. Loring, Matthew S. Taubman, Stephen W. Sharpe, Jerome C. Birnbaum, and Timothy J. Johnson

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y., Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons, J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]

Good and Smith, 1969
Good, W.D.; Smith, N.K., Enthalpies of combustion of toluene, benzene, cyclohexane, cyclohexene, methylcyclopentane, 1-methylcyclopentene, and n-hexane, J. Chem. Eng. Data, 1969, 14, 102-106. [all data]

Prosen, Gilmont, et al., 1945
Prosen, E.J.; Gilmont, R.; Rossini, F.D., Heats of combustion of benzene, toluene, ethyl-benzene, o-xylene, m-xylene, p-xylene, n-propylbenzene, and styrene, J. Res. NBS, 1945, 34, 65-70. [all data]

Prosen, Johnson, et al., 1946
Prosen, E.J.; Johnson, W.H.; Rossini, F.D., Heats of combustion and formation at 25°C of the alkylbenzenes through C10H14, and of the higher normal monoalkylbenzenes, J. Res. NBS, 1946, 36, 455-461. [all data]

Landrieu, Baylocq, et al., 1929
Landrieu, P.; Baylocq, F.; Johnson, J.R., Etude thermochimique dans la serie furanique, Bull. Soc. Chim. France, 1929, 45, 36-49. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Todd S.S., 1978
Todd S.S., Vapor-flow calorimetry of benzene, J. Chem. Thermodyn., 1978, 10, 641-648. [all data]

Montgomery J.B., 1942
Montgomery J.B., The heat capacity of organic vapors. IV. Benzene, fluorobenzene, toluene, cyclohexane, methylcyclohexane and cyclohexene, J. Am. Chem. Soc., 1942, 64, 2375-2377. [all data]

Pitzer K.S., 1943
Pitzer K.S., The thermodynamics and molecular structure of benzene and its methyl derivatives, J. Am. Chem. Soc., 1943, 65, 803-829. [all data]

Scott D.W., 1947
Scott D.W., The heat capacity of benzene vapor. The contribution of anharmonicity, J. Chem. Phys., 1947, 15, 565-568. [all data]

Oliver, Eaton, et al., 1948
Oliver, G.D.; Eaton, M.; Huffman, H.M., The heat capacity, heat of fusion and entropy of benzene, J. Am. Chem. Soc., 1948, 70, 1502-1505. [all data]

Huffman, Parks, et al., 1930
Huffman, H.M.; Parks, G.S.; Daniels, A.C., Thermal data on organic compounds. VII. The heat capacities, entropies and free energies of twelve aromatic hydrocarbons, J. Am. Chem. Soc., 1930, 52, 1547-1558. [all data]

Ahlberg, Blanchard, et al., 1937
Ahlberg, J.E.; Blanchard, E.R.; Lundberg, W.O., The heat capacities of benzene, methyl alcohol and glycerol at very low temperatures, J. Chem. Phys., 1937, 5, 537-551. [all data]

Grolier, Roux-Desgranges, et al., 1993
Grolier, J.-P.E.; Roux-Desgranges, G.; Berkane, M.; Jimenez, E.; Wilhelm, E., Heat capacities and densities of mixtures of very polar substances 2. Mixtures containing N,N-dimethylformamide, J. Chem. Thermodynam., 1993, 25(1), 41-50. [all data]

Czarnota, 1991
Czarnota, I., Heat capacity of benzene at high pressures, J. Chem. Thermodynam., 1991, 23, 25-30. [all data]

Lainez, Rodrigo, et al., 1989
Lainez, A.; Rodrigo, M.M.; Wilhelm, E.; Grolier, J.-P.E., Excess volumes and excess heaat capacitiies of some mixtures with trans,trans,cis-1,5,9-cyclododecatriene at 298.15K, J. Chem. Eng. Data, 1989, 34, 332-335. [all data]

Shiohama, Ogawa, et al., 1988
Shiohama, Y.; Ogawa, H.; Murakami, S.; Fujihara, I., Excess molar isobaric heat capacities and isentropic compressibilities of (cis- or trans-decalin + benzene or toluene or iso-octane or n-heptane) at 298.15 K, J. Chem. Thermodynam., 1988, 20, 1183-1189. [all data]

Grolier, Roux-Desgranges, et al., 1987
Grolier, J.-P.E.; Roux-Desgranges, G.; Kooner, Z.S.; Smith, J.F.; Hepler, L.G., Thermal and volumetric properties of chloroform + benzene mixtures and the ideal associated solution model of complex formation, J. Solution Chem., 1987, 16, 745-752. [all data]

Kalali, Kohler, et al., 1987
Kalali, H.; Kohler, F.; Svejda, P., Excess properties of the mixture bis(2-dichlorethyl)ether (chlorex) + 2,2,4-trimethylpentane (isooctane), Monatsh. Chem., 1987, 118, 1-18. [all data]

Tanaka, 1987
Tanaka, R., Excess heat capacities for mixture of benzene with n-heptane at 293.15, 298.15 and 303.15 K, J. Chem. Eng. Data, 1987, 32, 176-177. [all data]

Naziev, Bashirov, et al., 1986
Naziev, Ya.M.; Bashirov, M.M.; Badalov, Yu.A., Experimental device for measurement of isobaric specific heat of electrolytes at elevated pressures, Inzh-Fiz. Zhur., 1986, 51(5), 789-795. [all data]

Reddy, 1986
Reddy, K.S., Isentropic compressibilities of binary liquid mixtures at 303.15 and 313.15 K, J. Chem. Eng. Data, 1986, 31, 238-240. [all data]

Ogawa and Murakami, 1985
Ogawa, H.; Murakami, S., Flow microcalorimeter for heat capacities of solutions, Thermochim. Acta, 1985, 88, 255-260. [all data]

Tanaka, 1985
Tanaka, R., Excess heat capacities for mixtures of benzene with cyclopentane, methylcyclohexane, and cyclooctane at 298.15 K, J. Chem. Eng. Data, 1985, 30, 267-269. [all data]

Gorbunova, Simonov, et al., 1983
Gorbunova, N.I.; Simonov, V.M.; Shipova, V.A., Thermodynamic properties of benzene, Teplofiz. Vys. Temp., 1983, 21(2), 270-275. [all data]

Gorbunova, Grigoriev, et al., 1982
Gorbunova, N.I.; Grigoriev, V.A.; Simonov, V.M.; Shipova, V.A., Heat capacity of liquid benzene and hexafluorobenzene at atmospheric pressure, Int. J. Thermophysics, 1982, 3, 1-15. [all data]

Grolier, Inglese, et al., 1982
Grolier, J.-P.E.; Inglese, A.; Wilhelm, E., Excess volumes and excess heat capacities of tetrachloroethene + cyclohexane, + methylcyclohexane, + benzene, and + toluene at 298.15 K, J. Chem. Thermodynam., 1982, 14, 523-529. [all data]

Tanaka, 1982
Tanaka, R., Determination of excess heat capacities of (benzene + tetrachloromethane and + cyclohexane) between 293.15 and 303.15 K by use of a Picker flow calorimeter, J. Chem. Thermodynam., 1982, 14, 259-268. [all data]

Wilhelm, Faradjzadeh, et al., 1982
Wilhelm, E.; Faradjzadeh, A.; Grolier, J.-P.E., Excess volumes and excess heat capacities of 2,3-dimethylbutane + butane and + toluene, J. Chem. Thermodynam., 1982, 14, 1199-1200. [all data]

Atalla, El-Sharkawy, et al., 1981
Atalla, S.R.; El-Sharkawy, A.A.; Gasser, F.A., Measurement of thermal properties of liquids with an AC heated-wire technique, Inter. J. Thermophys., 1981, 2(2), 155-162. [all data]

Vesely, Zabransky, et al., 1979
Vesely, F.; Zabransky, M.; Svoboda, V.; Pick, J., The use of mixing calorimeter for measuring heat capacities of liquids, Coll. Czech. Chem. Commun., 1979, 44, 3529-3532. [all data]

Grolier, Wilhelm, et al., 1978
Grolier, J.-P.E.; Wilhelm, E.; Hamedi, M.H., Molar heat capacities and isothermal compressibility of binary liquid mixtures: carbon tetrachloride + benzene, carbon tetrachloride + cyclohexane and benzene + cyclohexane, Ber. Bunsenges. Phys. Chem., 1978, 82, 1282-1290. [all data]

Vesely, Svoboda, et al., 1977
Vesely, F.; Svoboda, V.; Pick, J., Heat capacities of some organic liquids determined with the mixing calorimeter, 1st Czech. Conf. Calorimetry (Lect. Short Commun.), 1977, C9-1-C9-4. [all data]

Wilhelm, Grolier, et al., 1977
Wilhelm, E.; Grolier, J.-P.E.; Karbalai Ghassemi, M.H., Molar heat capacities of binary liquid mixtures: 1,2-dichloroethane + benzene, + toluene, and + p-xylene, Ber. Bunsenges. Phys. Chem., 1977, 81, 925-930. [all data]

Fortier, Benson, et al., 1976
Fortier, J.-L.; Benson, G.C.; Picker, P., Heat capacities of some organic liquids determined with the Picker flow calorimeter, J. Chem. Thermodynam., 1976, 8, 289-299. [all data]

Fortier and Benson, 1976
Fortier, J.-L.; Benson, G.C., Excess heat capacities of binary liquid mixtures determined with a Picker flow calorimeter, J. Chem. Thermodynam., 1976, 8, 411-423. [all data]

Rajagopal and Subrahmanyam, 1974
Rajagopal, E.; Subrahmanyam, S.V., Excess function of VE,(dVE/dp)T, and CpE of isooctane + benzene and + toluene, J. Chem. Thermodynam., 1974, 6, 873-876. [all data]

Deshpande and Bhatagadde, 1971
Deshpande, D.D.; Bhatagadde, L.G., Heat capacities at constant volume, free volumes, and rotational freedom in some liquids, Aust. J. Chem., 1971, 24, 1817-1822. [all data]

Hyder Khan and Subrahmanyam, 1971
Hyder Khan, V.; Subrahmanyam, S.V., Excess thermodynamic functions of the systems: benzene + p-xylene and benzene + p-dioxan, Trans. Faraday Soc., 1971, 67, 2282-2291. [all data]

Subrahmanyam and Khan, 1969
Subrahmanyam, S.V.; Khan, V.H., Thermodynamics of the system benzene - p-dioxane, Curr. Sci., 1969, 38, 510-511. [all data]

Recko, 1968
Recko, W.M., Excess heat capacity of the binary systems formed by n-propyl alcohol with benzene, mesitylene and cyclohexane, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1968, 16, 549-552. [all data]

Pacor, 1967
Pacor, P., Applicability of the DuPont 900 DTA apparatus in quantitative differential thermal analysis, Anal. Chim. Acta, 1967, 37, 200-208. [all data]

Rastorguev and Ganiev, 1967
Rastorguev, Yu.L.; Ganiev, Yu.A., Study of the heat capacity of selected solvents, Izv. Vyssh. Uchebn. Zaved. Neft Gaz. 10, 1967, No.1, 79-82. [all data]

Findenegg, Gruber, et al., 1965
Findenegg, G.H.; Gruber, K.; Pereira, J.F.; Kohler, F., Kalorimetrische Messungen an Mischungen von Nichtelektrolyten, 1. Mitt.: Molwarme des Systems 1,2-Dibromathan-Benzol, Monatsh. Chem., 1965, 96, 669-678. [all data]

Rabinovich and Nikolaev, 1962
Rabinovich, I.B.; Nikolaev, P.N., Isotopic effect in the specific heat of some deutero compounds, Dokl. Akad. Nauk, 1962, SSSR 142, 1335-1338. [all data]

Swietoslawski and Zielenkiewicz, 1960
Swietoslawski, W.; Zielenkiewicz, A., Mean specific heat in homologous series of binary and ternary positive azeotropes, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1960, 8, 651-653. [all data]

Duff and Everett, 1956
Duff, G.M.; Everett, D.H., The heat capacity of the system benzene + diphenylmethane, Trans. Faraday Soc., 1956, 52, 753-763. [all data]

Staveley, Tupman, et al., 1955
Staveley, L.A.K.; Tupman, W.I.; Hart, K.R., Some thermodynamice properties of the systems benzene + ethylene dichloride, benzene + carbon tetrachloride, acetone + chloroform, and acetone + carbon disulphide, Trans. Faraday Soc., 1955, 51, 323-342. [all data]

Sieg, Crtzen, et al., 1951
Sieg, L.; Crtzen, J.L.; Jost, W., Zur Thermodynamik von Mischphasen IX. Über das Verdampfungsgleichgewicht Benzol-1-2-Dichloraethan, Z. Phys. Chem., 1951, 198, 263-269. [all data]

Tschamler, 1948
Tschamler, H., Uber binare flussige Mischungen I. Mischungswarment, Volumseffekte und Zustandsdiagramme von chlorex mit benzol und n-alkylbenzolen, Monatsh. Chem., 1948, 79, 162-177. [all data]

Kurbatov, 1947
Kurbatov, V.Ya., Specific heat of liquids. I. Specific heat of benzenoid hydrocarbons, Zhur. Obshch. Khim., 1947, 17, 1999-2003. [all data]

Zhdanov, 1941
Zhdanov, A.K., Specific heats of some liquids and azeotropic mixtures, Zhur. Obshch. Khim., 1941, 11, 471-482. [all data]

Burlew, 1940
Burlew, J.S., Measurement of the heat capacity of a small volume of liquid by the piezo-thermometric method. III. Heat capacity of benzene and of toluene from 8°C. to the boiling point, J. Am. Chem. Soc., 1940, 62, 696-700. [all data]

Kolosovskii and Udovenko, 1934
Kolosovskii, N.A.; Udovenko, W.W., Specific heat of liquids. II., Zhur. Obshchei Khim., 1934, 4, 1027-1033. [all data]

de Kolossowsky and Udowenko, 1933
de Kolossowsky, N.A.; Udowenko, W.W., Mesure des chaleurs specifique moleculaires de quelques liquides, Compt. rend., 1933, 197, 519-520. [all data]

Ferguson and Miller, 1933
Ferguson, A.; Miller, J.T., A method for the determination of the specific heats of liquids, and a determination of the specific heats of aniline and benzene over the approximate range 20°C to 50°C, Proc. Phys. Soc. London, 1933, 45, 194-207. [all data]

Richards and Wallace, 1932
Richards, W.T.; Wallace, J.H., Jr., The specific heats of five organic liquids from their adiabatic temperature-pressure coefficients, J. Am. Chem. Soc., 1932, 54, 2705-2713. [all data]

Fiock, Ginnings, et al., 1931
Fiock, E.F.; Ginnings, D.C.; Holton, W.B., Calorimetric determinations of thermal properties of methyl alcohol, ethyl alcohol, and benzene, J. Res., 1931, NBS 6, 881-900. [all data]

Andrews, Lynn, et al., 1926
Andrews, D.H.; Lynn, G.; Johnston, J., The heat capacities and heat of crystallization of some isomeric aromatic compounds, J. Am. Chem. Soc., 1926, 48, 1274-1287. [all data]

Williams and Daniels, 1925
Williams, J.W.; Daniels, F., The specific heats of binary mixtures, J. Am. Chem. Soc., 1925, 47, 1490-1503. [all data]

Willams and Daniels, 1924
Willams, J.W.; Daniels, F., The specific heats of certain organic liquids at elevated temperatures, J. Am. Chem. Soc., 1924, 46, 903-917. [all data]

Dejardin, 1919
Dejardin, G., Pressions maxima des vapeurs du benzene et du cyclohexane aux temperatures moyennes et calcul de leurs chaleurs specifiques principales, Ann. phys. [9], 1919, 11, 253-291. [all data]

von Reis, 1881
von Reis, M.A., Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht, Ann. Physik [3], 1881, 13, 447-464. [all data]

Aoyama and Kanda, 1935
Aoyama, S.; Kanda, E., Studies on the heat capacities at low temperature. Report I. Heat capacities of some organic substances at low temperature, Sci. Rept. Tohoku Imp. Univ. [1]24, 1935, 107-115. [all data]

Maass and Walbauer, 1925
Maass, O.; Walbauer, L.J., The specific heats and latent heats of fusion of ice and of several organic compounds, J. Am. Chem. Soc., 1925, 47, 1-9. [all data]

Kruif, 1980
Kruif, C.G., Enthalpies of sublimation and vapour pressures of 11 polycyclic hydrocarbons, J. Chem. Thermodyn., 1980, 12, 243-248. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Lubomska, Banas, et al., 2002
Lubomska, Monika; Banas, Agnieszka; Malanowski, Stanislaw K., Vapor-Liquid Equilibrium in Binary Systems Formed by Allyl Alcohol with Benzene and with Cyclohexane, J. Chem. Eng. Data, 2002, 47, 6, 1466-1471, https://doi.org/10.1021/je025540l . [all data]

Liu and Dickhut, 1994
Liu, Kewen; Dickhut, Rebecca M., Saturation vapor pressures and thermodynamic properties of benzene and selected chlorinated benzenes at environmental temperatures, Chemosphere, 1994, 29, 3, 581-589, https://doi.org/10.1016/0045-6535(94)90445-6 . [all data]

Ambrose, Ewing, et al., 1990
Ambrose, D.; Ewing, M.B.; Ghiassee, N.B.; Sanchez Ochoa, J.C., The ebulliometric method of vapour-pressure measurement: vapour pressures of benzene, hexafluorobenzene, and naphthalene, The Journal of Chemical Thermodynamics, 1990, 22, 6, 589-605, https://doi.org/10.1016/0021-9614(90)90151-F . [all data]

Dong, Lin, et al., 1988
Dong, Jin-Quan; Lin, Rui-Sen; Yen, Wen-Hsing, Heats of vaporization and gaseous molar heat capacities of ethanol and the binary mixture of ethanol and benzene, Can. J. Chem., 1988, 66, 4, 783-790, https://doi.org/10.1139/v88-136 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Natarajan, 1983
Natarajan, G., High-temperature calorimeter for the measurement of vapor pressure and enthalpy of vaporization, Rev. Sci. Instrum., 1983, 54, 9, 1175, https://doi.org/10.1063/1.1137545 . [all data]

Tsonopoulos and Wilson, 1983
Tsonopoulos, Constantine; Wilson, G.M., High-temperature mutual solubilities of hydrocarbons and water. Part I: Benzene, cyclohexane andn-hexane, AIChE J., 1983, 29, 6, 990-999, https://doi.org/10.1002/aic.690290618 . [all data]

Rao and Viswanath, 1977
Rao, Yaddanapudi J.; Viswanath, Dabir S., Integral isobaric heats of vaporization of benzene-chloroethane systems, J. Chem. Eng. Data, 1977, 22, 1, 36-38, https://doi.org/10.1021/je60072a011 . [all data]

Svoboda, Veselý, et al., 1973
Svoboda, V.; Veselý, F.; Holub, R.; Pick, J., Enthalpy data of liquids. II. The dependence of heats of vaporization of methanol, propanol, butanol, cyclohexane, cyclohexene, and benzene on temperature, Collect. Czech. Chem. Commun., 1973, 38, 12, 3539-3543, https://doi.org/10.1135/cccc19733539 . [all data]

Mita, Imai, et al., 1971
Mita, Itaru; Imai, Isao; Kambe, Hirotaro, Determination of heat of mixing and heat of vaporization with a differential scanning calorimeter, Thermochimica Acta, 1971, 2, 4, 337-344, https://doi.org/10.1016/0040-6031(71)85035-9 . [all data]

Forziati, Norris, et al., 1949
Forziati, Alphonse F.; Norris, William R.; Rossini, Frederick D., Vapor pressures and boiling points of sixty API-NBS hydrocarbons, J. RES. NATL. BUR. STAN., 1949, 43, 6, 555-17, https://doi.org/10.6028/jres.043.050 . [all data]

Yarym-Agaev, Fedos'ev, et al., 1949
Yarym-Agaev, N.L.; Fedos'ev, N.N.; Skorikov, K.G., Zh. Fiz. Khim., 1949, 11, 1257. [all data]

Thomson, 1946
Thomson, George Wm., The Antoine Equation for Vapor-pressure Data., Chem. Rev., 1946, 38, 1, 1-39, https://doi.org/10.1021/cr60119a001 . [all data]

Scott and Brickwedde, 1945
Scott, R.B.; Brickwedde, F.G., Thermodynamic properties of solid and liquid ethylbenzene from 0 to 300 degrees K, J. RES. NATL. BUR. STAN., 1945, 35, 6, 501-17, https://doi.org/10.6028/jres.035.024 . [all data]

Willingham, Taylor, et al., 1945
Willingham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D., Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane, and alkylbenzene hydrocarbons, J. RES. NATL. BUR. STAN., 1945, 35, 3, 219-17, https://doi.org/10.6028/jres.035.009 . [all data]

Smith, 1941
Smith, E.R., Boiling points of benzene, 2,2,3-trimethylbutane, 3-ethylpentane, and 2,2,4,4-tetramethylpentane within the range 100 to 1,500 millimeters of mercury, J. RES. NATL. BUR. STAN., 1941, 26, 2, 129-17, https://doi.org/10.6028/jres.026.004 . [all data]

Stuckey and Saylor, 1940
Stuckey, James M.; Saylor, John H., The Vapor Pressures of Some Organic Compounds. I. 1, J. Am. Chem. Soc., 1940, 62, 11, 2922-2925, https://doi.org/10.1021/ja01868a011 . [all data]

Eon, Pommier, et al., 1971
Eon, C.; Pommier, C.; Guiochon, G., Vapor pressures and second virial coefficients of some five-membered heterocyclic derivatives, J. Chem. Eng. Data, 1971, 16, 4, 408-410, https://doi.org/10.1021/je60051a008 . [all data]

Deshpande and Pandya, 1967
Deshpande, D.D.; Pandya, M.V., Thermodynamics of Binary Solutions. Part 2. Vapour Pressures and Excess Free Energies of Aniline Solutions, Trans. Faraday Soc., 1967, 63, 2149-2157, https://doi.org/10.1039/tf9676302149 . [all data]

Kalafati, Rasskazov, et al., 1967
Kalafati, D.D.; Rasskazov, D.S.; Petrov, E.K., Experimental Determination of a Dependence of a Saturated Vapor Pressure of Benzene on Temperature, Zh. Fiz. Khim., 1967, 41, 1357-1359. [all data]

Williamham, Taylor, et al., 1945
Williamham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D., Vapor Pressures and Boiling Points of Some Paraffin, Alkylcyclopentane, Alkylcyclohexane, and Alkylbenzene Hydrocarbons, J. Res. Natl. Bur. Stand. (U.S.), 1945, 35, 3, 219-244, https://doi.org/10.6028/jres.035.009 . [all data]

Ha, Morrison, et al., 1976
Ha, H.; Morrison, J.A.; Richards, E.L., Vapour pressures of solid benzene, cyclohexane and their mixtures, J. Chem. Soc., Faraday Trans. 1, 1976, 72, 0, 1051, https://doi.org/10.1039/f19767201051 . [all data]

Hessler, 1984
Hessler, W., Wiss. Zeitschr. Wilhelm-Pieck-Univ. Rostock, Naturwiss. Reihe, 1984, 33, 9. [all data]

De Kruif and Van Ginkel, 1977
De Kruif, C.G.; Van Ginkel, C.H.D., Torsion-weighing effusion vapour-pressure measurements on organic compounds, The Journal of Chemical Thermodynamics, 1977, 9, 8, 725-730, https://doi.org/10.1016/0021-9614(77)90015-5 . [all data]

Jackowski, 1974
Jackowski, A.W., Vapour pressures of solid benzene and of solid cyclohexane, The Journal of Chemical Thermodynamics, 1974, 6, 1, 49-52, https://doi.org/10.1016/0021-9614(74)90205-5 . [all data]

Jones, 1960
Jones, A.H., Sublimation Pressure Data for Organic Compounds., J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019 . [all data]

Milazzo, 1956
Milazzo, G., Ann. Chim. (Rome), 1956, 46, 1105. [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Wolf and Weghofer, 1938
Wolf, K.L.; Weghofer, H., Uber sublimationswarmen, Z. Phys. Chem., 1938, 39, 194-208. [all data]

de Boer, 1936
de Boer, J.H., The influence of van der Waals' forces and primary bonds on binding energy, strength and orientation, with special reference to some artificial resins, Trans. Faraday Soc., 1936, 32, 10, https://doi.org/10.1039/tf9363200010 . [all data]

Mündel, 1913
Mündel, C.F., Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1913, 85, 435. [all data]

Ziegler and Andrews, 1942
Ziegler, W.T.; Andrews, D.H., The heat capacity of benzene-d6, J. Am. Chem. Soc., 1942, 64, 2482-2485. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Smith, 1979
Smith, G.W., Phase behavior of some linear polyphenyls, Mol. Cryst. Liq. Cryst., 1979, 49, 207-209. [all data]

Tschurl, Ueberfluss, et al., 2007
Tschurl, M.; Ueberfluss, C.; Boesl, U., Anion photoelectron, photodetachment, and infrared dissociation spectra of Cl-center dot C6H6, Chem. Phys. Lett., 2007, 439, 1-3, 23-28, https://doi.org/10.1016/j.cplett.2007.03.059 . [all data]

Hiraoka, Mizuse, et al., 1988
Hiraoka, K.; Mizuse, S.; Yamabe, S., Determination of the Stabilities and Structures of X-(C6H6) Clusters (X = Cl, Br, and I), Chem. Phys. Lett., 1988, 147, 2-3, 174, https://doi.org/10.1016/0009-2614(88)85078-4 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P., Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-, J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014 . [all data]

Sunner, Nishizawa, et al., 1981
Sunner, J.; Nishizawa, K.; Kebarle, P., Ion - Solvent Molecule Interactions in the Gas Phase. Potassium Ion and Benzene, J. Phys. Chem., 1981, 85, 13, 1814, https://doi.org/10.1021/j150613a011 . [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Chowdhury and Kebarle, 1986
Chowdhury, S.; Kebarle, P., Role of Binding Energies in A-.B and A.B- Complexes in the Kinetics of Gas Phase Electron Transfer Reactions:A- + B = A + B- Involving Perfluoro Compounds: SF6, C6F11CF3, J. Chem. Phys., 1986, 85, 9, 4989, https://doi.org/10.1063/1.451687 . [all data]

Davico, Bierbaum, et al., 1995
Davico, G.E.; Bierbaum, V.M.; Depuy, C.H.; Ellison, G.B.; Squires, R.R., The C-H bond energy of benzene, J. Am. Chem. Soc., 1995, 117, 9, 2590, https://doi.org/10.1021/ja00114a023 . [all data]

Ervin and DeTuro, 2002
Ervin, K.M.; DeTuro, V.F., Anchoring the gas-phase acidity scale, J. Phys. Chem. A, 2002, 106, 42, 9947-9956, https://doi.org/10.1021/jp020594n . [all data]

Alecu, Gao, et al., 2007
Alecu, I.M.; Gao, Y.D.; Hsieh, P.C.; Sand, J.P.; Ors, A.; McLeod, A.; Marshall, P., Studies of the kinetics and thermochemistry of the forward and reverse reaction Cl+C6H6=HCl+C6H5, J. Phys. Chem. A, 2007, 111, 19, 3970-3976, https://doi.org/10.1021/jp067212o . [all data]

Gunion, Gilles, et al., 1992
Gunion, R.F.; Gilles, M.K.; Polak, M.L.; Lineberger, W.C., Ultraviolet Photoelectron Spectroscopy of the Phenide, Benzyl, and Phenoxide Anions., Int. J. Mass Spectrom. Ion Proc., 1992, 117, 601, https://doi.org/10.1016/0168-1176(92)80115-H . [all data]

Meot-ner and Sieck, 1986
Meot-ner, M.; Sieck, L.W., Relative acidities of water and methanol, and the stabilities of the dimer adducts, J. Phys. Chem., 1986, 90, 6687. [all data]

Graul and Squires, 1990
Graul, S.T.; Squires, R.R., Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions, J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007 . [all data]

Bohme and Young, 1971
Bohme, D.K.; Young, L.B., Electron affinities from thermal proton transfer reactions: C6H5 and C6H5CH2, Can. J. Chem., 1971, 49, 2918. [all data]

Bartmess and McIver Jr., 1979
Bartmess, J.E.; McIver Jr., The Gas Phase Acidity Scale in Gas Phase Ion Chemistry, Gas Phase Ion Chemistry, V. 2, M.T. Bowers, Ed., Academic Press, NY, 1979, Ch. 11, Elsevier, 1979. [all data]

Hiraoka, Fujimaki, et al., 1991
Hiraoka, K.; Fujimaki, S.; Aruga, K.; Yamabe, S., Stability and Structure of Benzene Dimer Cation (C6H6)2+, J. Chem. Phys., 1991, 95, 11, 8413, https://doi.org/10.1063/1.461270 . [all data]

Meot-Ner (Mautner), Hamlet, et al., 1978
Meot-Ner (Mautner), M.; Hamlet, P.; Hunter, E.P.; Field, F.H., Bonding Energies in Association Ions of Aromatic Molecules. Correlations with Ionization Energies, J. Am. Chem. Soc., 1978, 100, 17, 5466, https://doi.org/10.1021/ja00485a034 . [all data]

Field, Hamlet, et al., 1969
Field, F.H.; Hamlet, P.; Libby, W.F., Effect of Temperature on the Mass Spectrum of Benzene at High Pressures, J. Am. Chem. Soc., 1969, 91, 11, 2839, https://doi.org/10.1021/ja01039a003 . [all data]

Amicangelo and Armentrout, 2000
Amicangelo, J.C.; Armentrout, P.B., Absolute Binding Energies of Alkali-Metal Cation Complexes with Benzene Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, J. Phys. Chem. A, 2000, 104, 48, 11420, https://doi.org/10.1021/jp002652f . [all data]

Woodin and Beauchamp, 1978
Woodin, R.L.; Beauchamp, J.L., Bonding of Li+ to Lewis Bases in the Gas Phase. Reversals in Methyl Substituent Effects for Different Reference Acids, J. Am. Chem. Soc., 1978, 100, 2, 501, https://doi.org/10.1021/ja00470a024 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Amicangelo and Armentrout, 2001
Amicangelo, J.C.; Armentrout, P.B., Relative and Absolute Bond Dissociation Energies of Sodium Cation Complexes Determined Using Competitive Collision-Induced Dissociation Experiments, Int. J. Mass Spectrom., 2001, 212, 1-3, 301, https://doi.org/10.1016/S1387-3806(01)00494-8 . [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

Guo, Purnell, et al., 1990
Guo, B.C.; Purnell, J.W.; Castleman, A.W., The Clustering Reactions of Benzene with Sodium and Lead Ions, Chem. Phys. Lett., 1990, 168, 2, 155, https://doi.org/10.1016/0009-2614(90)85122-S . [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S., Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems, J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026 . [all data]

Meot-Ner (Mautner), 1989
Meot-Ner (Mautner), M., Ion DChemistry of Ferrocene. Thermochemistry of Ionization and Protonation and Solvent Clustering. Slow and Entropy - Driven Proton - Transfer Kinetics, J. Am. Chem. Soc., 1989, 111, 8, 2830, https://doi.org/10.1021/ja00190a014 . [all data]

Meyer, Khan, et al., 1995
Meyer, F.; Khan, F.A.; Armentrout, P.B., Thermochemistry of Transition Metal Benzene complexes: Binding energies of M(C6H6)x+ (x = 1,2) for M = Ti to Cu, J. Am. Chem. Soc., 1995, 117, 38, 9740, https://doi.org/10.1021/ja00143a018 . [all data]

Kemper, Bushnell, et al., 1993
Kemper, P.R.; Bushnell, J.; Von Koppen, P.; Bowers, M.T., Binding Energies of Co+(H2/CH4/C2H6)1,2,3 Clusters, J. Phys. Chem., 1993, 97, 9, 1810, https://doi.org/10.1021/j100111a016 . [all data]

Ernstberger, Krause, et al., 1990
Ernstberger, B.; Krause, H.; Kiermeier, A.; Neusser, H.J., Multiphoton ionization and dissociation of mixed van der Waals clusters in a linear reflectron time-of-flight mass spectrometer, J. Chem. Phys., 1990, 92, 9, 5285, https://doi.org/10.1063/1.458603 . [all data]

Ruhl, Bisling, et al., 1986
Ruhl, E.; Bisling, P.G.F.; Brutschy, B.; Baumgartel, H., Photoionization of Aromatic van der Waals Complexes in a Supersonic Jet, Chem. Phys. Lett., 1986, 126, 3-4, 232, https://doi.org/10.1016/S0009-2614(86)80075-6 . [all data]

Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M., Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives, J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034 . [all data]

Searles and Kebarle, 1969
Searles, S.K.; Kebarle, P., Hydration of the Potassium Ion in the Gas Phase: Enthalpies and Entropies of Hydration Reactions K+(H2O)n-1 + H2O = K+(H2O)n for n=1 to n=6, Can. J. Chem., 1969, 47, 14, 2619, https://doi.org/10.1139/v69-432 . [all data]

Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G., Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions, Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103 . [all data]

Lin, Chen, et al., 1997
Lin, C.-Y.; Chen, Q.; Chen, H.; Freiser, B.S., Observing Unimolecular Dissociation of Metastable Ions in FT-ICR: A Novel Application of the Continuous Ejection Technique, J. Phys. Chem. A, 1997, 101, 34, 6023, https://doi.org/10.1021/jp970446a . [all data]

Lin and Dunbar, 1997
Lin, C.-Y.; Dunbar, R.C., Radiative Association Kinetics and Binding Energies of Chromium Ions with Benzene and Benzene Derivatives, Organometallics, 1997, 16, 12, 2691, https://doi.org/10.1021/om960949n . [all data]

Hiraoka, Mizuse, et al., 1987
Hiraoka, K.; Mizuse, S.; Yamabe, S., A Determination of the Stability and Structure of F-(C6H6) and F-(C6F6) Clusters, J. Chem. Phys., 1987, 86, 7, 4102, https://doi.org/10.1063/1.451920 . [all data]

Gapeev and Dunbar, 2002
Gapeev, A.; Dunbar, R.C., Reactivity and Binding Energies of Transition Metal Halide Ions with Benzene, J. Am. Soc. Mass Spectrom., 2002, 13, 5, 477, https://doi.org/10.1016/S1044-0305(02)00373-2 . [all data]

Sen Sharma, Ikuta, et al., 1982
Sen Sharma, D.K.; Ikuta, S.; Kebarle, P., Alkylation of Benzene by Alkyl Cations. Stability of the tert - Butyl Benzenium Ion, Can. J. Chem., 1982, 60, 18, 2325, https://doi.org/10.1139/v82-331 . [all data]

El-Shall and Meot-Ner (Mautner), 1987
El-Shall, M.S.; Meot-Ner (Mautner), M., Ionic Charge Transfer Complexes. 3. Delocalised pi Systems as Electron Acceptors and Donors, J. Phys. Chem., 1987, 91, 5, 1088, https://doi.org/10.1021/j100289a017 . [all data]

Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S., Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes, J. Am. Chem. Soc., 1981, 103, 2791. [all data]

Farid and McMahon, 1978
Farid, R.; McMahon, T.B., Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0 . [all data]

Lee and Squires, 1986
Lee, R.E.; Squires, R.R., Anionic homoaromaticity: A gas phase experimental study, J. Am. Chem. Soc., 1986, 105, 5078. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References