1-Pentanol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-71. ± 1.kcal/molAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
gas95.91cal/mol*KN/ACounsell J.F., 1968GT

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
40.131403.49Stromsoe E., 1970Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 1.42 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Please also see Counsell J.F., 1970.; GT
42.46 ± 0.34418.95
42.58 ± 0.34420.75
41.726423.32
42.94 ± 0.34426.15
43.44 ± 0.34433.45
42.861438.26
44.07 ± 0.34442.85
44.17 ± 0.34444.35
44.061453.45
46.09 ± 0.34472.85
45.516473.19
46.73 ± 0.34482.25
50.03 ± 0.34531.25
51.57 ± 0.34554.15
52.91 ± 0.34573.95

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-84.039 ± 0.067kcal/molCcbMosselman and Dekker, 1975ALS
Δfliquid-84.3 ± 0.2kcal/molCcbHayes, 1971DRB
Δfliquid-84.27 ± 0.17kcal/molCcbGundry, Harrop, et al., 1969ALS
Δfliquid-85.55 ± 0.12kcal/molCcbChao and Rossini, 1965see Rossini, 1934; ALS
Δfliquid-85.65 ± 0.40kcal/molCcbGreen, 1960ALS
Quantity Value Units Method Reference Comment
Δcliquid-796.107 ± 0.067kcal/molCcbMosselman and Dekker, 1975Corresponding Δfliquid = -84.039 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-795.87 ± 0.16kcal/molCcbHayes, 1971Corresponding Δfliquid = -84.28 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-795.88 ± 0.15kcal/molCcbGundry, Harrop, et al., 1969Corresponding Δfliquid = -84.266 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-794.61 ± 0.09kcal/molCcbChao and Rossini, 1965see Rossini, 1934; Corresponding Δfliquid = -85.54 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-794.5kcal/molCcbVerkade and Coops, 1927Corrected for 298 and 1 atm.; Corresponding Δfliquid = -85.6 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid61.88cal/mol*KN/ACounsell, Lees, et al., 1968DH
liquid60.90cal/mol*KN/AParks, Huffman, et al., 1933Extrapolation below 90 K, 57.66 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
49.582298.15Benson and D'Arcy, 1986DH
49.582298.15Benson and D'Arcy, 1986, 2DH
49.759298.15Tanaka, Toyama, et al., 1986DH
49.947298.15Zegers and Somsen, 1984DH
49.57298.15D'Aprano, DeLisi, et al., 1983Data given at 288 and 298 K.; DH
49.14293.15Arutyunyan, Bagdasaryan, et al., 1981T = 293 to 393 K. p = 0.1 MPa. Unsmoothed experimental datum given as 2.332 kJ/kg*K. Cp given from 293.15 to 533.15 K for pressure range 10 to 60 MPa.; DH
50.74301.26Griigo'ev, Yanin, et al., 1979T = 301 to 463 K. p = 0.98 bar.; DH
49.809298.15Skold, Suurkuusk, et al., 1976DH
57.50313.2Paz Andrade, Paz, et al., 1970DH
49.78298.15Counsell, Lees, et al., 1968T = 10 to 390 K.; DH
48.21302.4Phillip, 1939DH
49.981298.0Parks, Huffman, et al., 1933T = 94 to 298 K. Value is unsmoothed experimental datum.; DH
43.81298.von Reis, 1881T = 298 to 400 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil411. ± 1.KAVGN/AAverage of 54 out of 66 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus194.35KN/ATimmermans, 1952Uncertainty assigned by TRC = 0.3 K; TRC
Tfus194.65KN/ATschamler, Richter, et al., 1949Uncertainty assigned by TRC = 0.5 K; TRC
Tfus194.65KN/ATimmermans and Mattaar, 1921Uncertainty assigned by TRC = 0.5 K; TRC
Quantity Value Units Method Reference Comment
Ttriple195.56KN/ACounsell, Lees, et al., 1968, 2Uncertainty assigned by TRC = 0.02 K; TRC
Ttriple194.2KN/AParks, Huffman, et al., 1933, 2Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tc580. ± 20.KAVGN/AAverage of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Pc38.4 ± 0.4atmAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.326l/molN/AGude and Teja, 1995 
Quantity Value Units Method Reference Comment
ρc3.06 ± 0.02mol/lN/AGude and Teja, 1995 
ρc3.06mol/lN/ATeja, Lee, et al., 1989TRC
ρc3.10mol/lN/ASmith, Anselme, et al., 1986Uncertainty assigned by TRC = 0.20 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap13.5 ± 0.5kcal/molAVGN/AAverage of 14 values; Individual data points

Reduced pressure boiling point

Tboil (K) Pressure (atm) Reference Comment
323.20.017Weast and Grasselli, 1989BS

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
10.60411.2N/AMajer and Svoboda, 1985 
9.89392.4N/AMajer and Svoboda, 1985 
10.6411.N/AWormald and James, 2000AC
9.58448.N/AWormald and James, 2000AC
8.63473.N/AWormald and James, 2000AC
7.58498.N/AWormald and James, 2000AC
6.31523.N/AWormald and James, 2000AC
5.26548.N/AWormald and James, 2000AC
3.37573.N/AWormald and James, 2000AC
1.7586.N/AWormald and James, 2000AC
12.3350.N/AAucejo, Burguet, et al., 1994Based on data from 335. to 410. K.; AC
11.3403.AStephenson and Malanowski, 1987Based on data from 388. to 420. K.; AC
13.0341.AStephenson and Malanowski, 1987Based on data from 326. to 411. K.; AC
10.9423.AStephenson and Malanowski, 1987Based on data from 408. to 441. K.; AC
12.3362.EBStephenson and Malanowski, 1987Based on data from 347. to 429. K. See also Ambrose, Sprake, et al., 1972.; AC
13.3 ± 0.05313.CMajer, Svoboda, et al., 1985AC
13.0 ± 0.05328.CMajer, Svoboda, et al., 1985AC
12.7 ± 0.05343.CMajer, Svoboda, et al., 1985AC
12.2 ± 0.05358.CMajer, Svoboda, et al., 1985AC
13.1325.N/AWilhoit and Zwolinski, 1973Based on data from 310. to 411. K.; AC
12.1 ± 0.02362.CCounsell, Fenwick, et al., 1970AC
11.8 ± 0.02374.CCounsell, Fenwick, et al., 1970AC
11.2 ± 0.02392.CCounsell, Fenwick, et al., 1970AC
10.6 ± 0.02411.CCounsell, Fenwick, et al., 1970AC
13.4322.DTAKemme and Kreps, 1969Based on data from 307. to 411. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 298. to 421.298. to 368.
A (kcal/mol) 16.1414.72
α -0.8195-1.2689
β 0.82721.0462
Tc (K) 588.2551.6
ReferenceMajer and Svoboda, 1985Majer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
437.79 to 513.793.968121106.11-134.578Ambrose, Sprake, et al., 1975Coefficents calculated by NIST from author's data.
347.91 to 429.134.318471297.689-110.669Ambrose and Sprake, 1970Coefficents calculated by NIST from author's data.
307.1 to 411.4.677061492.549-91.621Kemme and Kreps, 1969 

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
2.5100195.56Counsell, Lees, et al., 1968DH
2.512195.6van Miltenburg and van den Berg, 2004AC
2.51195.6Domalski and Hearing, 1996AC
2.349194.2Parks, Huffman, et al., 1933DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
12.83195.56Counsell, Lees, et al., 1968DH
12.10194.2Parks, Huffman, et al., 1933DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C5H11O- + Hydrogen cation = 1-Pentanol

By formula: C5H11O- + H+ = C5H12O

Quantity Value Units Method Reference Comment
Δr374.1 ± 2.1kcal/molG+TSHiggins and Bartmess, 1998gas phase; B
Δr374.8 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr373.9 ± 2.8kcal/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr367.5 ± 2.0kcal/molIMREHiggins and Bartmess, 1998gas phase; B
Δr368.2 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr367.3 ± 2.7kcal/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B

C3H9Si+ + 1-Pentanol = (C3H9Si+ • 1-Pentanol)

By formula: C3H9Si+ + C5H12O = (C3H9Si+ • C5H12O)

Quantity Value Units Method Reference Comment
Δr44.7kcal/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr31.4cal/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
30.1468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

(C5H13O+ • 41-Pentanol) + 1-Pentanol = (C5H13O+ • 51-Pentanol)

By formula: (C5H13O+ • 4C5H12O) + C5H12O = (C5H13O+ • 5C5H12O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr11.kcal/molPHPMSMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr25.cal/mol*KN/AMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
5.1227.PHPMSMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M

(C5H13O+ • 1-Pentanol) + 1-Pentanol = (C5H13O+ • 21-Pentanol)

By formula: (C5H13O+ • C5H12O) + C5H12O = (C5H13O+ • 2C5H12O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr22.kcal/molPHPMSMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr32.cal/mol*KN/AMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
10.5346.PHPMSMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M

(C5H13O+ • 21-Pentanol) + 1-Pentanol = (C5H13O+ • 31-Pentanol)

By formula: (C5H13O+ • 2C5H12O) + C5H12O = (C5H13O+ • 3C5H12O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr14.0kcal/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr24.3cal/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M

(C5H13O+ • 31-Pentanol) + 1-Pentanol = (C5H13O+ • 41-Pentanol)

By formula: (C5H13O+ • 3C5H12O) + C5H12O = (C5H13O+ • 4C5H12O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr11.9kcal/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr24.4cal/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M

1-Pentanol = Pentanal + Hydrogen

By formula: C5H12O = C5H10O + H2

Quantity Value Units Method Reference Comment
Δr15.8 ± 0.38kcal/molEqkConnett, 1970liquid phase; ALS

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Standard Reference Data Program
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Sadtler Research Labs Under US-EPA Contract
State gas

This IR spectrum is from the NIST/EPA Gas-Phase Infrared Database .


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Counsell J.F., 1968
Counsell J.F., Thermodynamic properties of organic oxygen compounds. Part XIX. Low-temperature heat capacity and entropy of propan-1-ol, 2-methylpropan-1-ol, and pentan-1-ol, J. Chem. Soc. A, 1968, 1819-1823. [all data]

Stromsoe E., 1970
Stromsoe E., Heat capacity of alcohol vapors at atmospheric pressure, J. Chem. Eng. Data, 1970, 15, 286-290. [all data]

Counsell J.F., 1970
Counsell J.F., Thermodynamic properties of organic oxygen compounds. 24. Vapor heat capacities and enthalpies of vaporization of ethanol, 2-methyl-1-propanol, and 1-pentanol, J. Chem. Thermodyn., 1970, 2, 367-372. [all data]

Mosselman and Dekker, 1975
Mosselman, C.; Dekker, H., Enthalpies of formation of n-alkan-1-ols, J. Chem. Soc. Faraday Trans. 1, 1975, 417-424. [all data]

Hayes, 1971
Hayes, C.W., Bomb calorimetric studies on normal alkan-1-ols, steroregular polymethylmethacrylates, α-olefinic polymers, trioxane and oxygenated polymers, Diss. Abs., 1971, 31, 5903-5904. [all data]

Gundry, Harrop, et al., 1969
Gundry, H.A.; Harrop, D.; Head, A.J.; Lewis, G.B., Thermodynamic properties of organic oxygen compounds. 21. Enthalpies of combustion of benzoic acid, pentan-1-ol, octan-1-ol, and hexadecan-1-ol, J. Chem. Thermodyn., 1969, 1, 321-332. [all data]

Chao and Rossini, 1965
Chao, J.; Rossini, F.D., Heats of combustion, formation, and isomerization of nineteen alkanols, J. Chem. Eng. Data, 1965, 10, 374-379. [all data]

Rossini, 1934
Rossini, F.D., Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states, and the energies of their atomic linkages, J. Res. NBS, 1934, 13, 189-197. [all data]

Green, 1960
Green, J.H.S., Revision of the values of the heats of formation of normal alcohols, Chem. Ind. (London), 1960, 1215-1216. [all data]

Verkade and Coops, 1927
Verkade, P.E.; Coops, J., Jr., Calorimetric researches XIV. Heats of combustion of successive members of homologous series: the normal primary aliphatic alcohols, Recl. Trav. Chim. Pays-Bas, 1927, 46, 903-917. [all data]

Counsell, Lees, et al., 1968
Counsell, J.F.; Lees, E.B.; Martin, J.F., Thermodynamic properties of organic oxygen compounds. Part XIX. Low temperature heat capacity and entropy of propan-1-ol, 2-methyl-propan-1-ol, and pentan-1-ol, 1968, J. [all data]

Parks, Huffman, et al., 1933
Parks, G.S.; Huffman, H.M.; Barmore, M., Thermal data on organic compounds. XI. The heat capacities, entropies and free energies of ten compounds containing oxygen or nitrogen. J. Am. Chem. Soc., 1933, 55, 2733-2740. [all data]

Benson and D'Arcy, 1986
Benson, G.C.; D'Arcy, P.J., Excess isobaric heat capacities of some binary mixtures: (a C5-alkanol + n-heptane) at 298.15 K, J. Chem. Thermodynam., 1986, 18, 493-498. [all data]

Benson and D'Arcy, 1986, 2
Benson, G.C.; D'Arcy, P.J., Heat capacities of binary mixtures of n-dodecane with hexane isomers, Thermochim. Acta, 1986, 102, 75-81. [all data]

Tanaka, Toyama, et al., 1986
Tanaka, R.; Toyama, S.; Murakami, S., Heat capacities of {xCnH2n+1OH+(1-x)C7H16} for n = 1 to 6 at 298.15 K, J. Chem. Thermodynam., 1986, 18, 63-73. [all data]

Zegers and Somsen, 1984
Zegers, H.C.; Somsen, G., Partial molar volumes and heat capacities in (dimethylformamide + an n-alkanol), J. Chem. Thermodynam., 1984, 16, 225-235. [all data]

D'Aprano, DeLisi, et al., 1983
D'Aprano, A.; DeLisi, R.; Donato, D.I., Thermodynamics of binary mixtures: volumes, heat capacities, and dilution enthalpies for the n-pentanol + 2-methyl-2-butanol system, J. Solution Chem., 1983, 12, 383-400. [all data]

Arutyunyan, Bagdasaryan, et al., 1981
Arutyunyan, G.S.; Bagdasaryan, S.S.; Kerimov, A.M., Experimental investigation of the isobaric heat capacity of n-propyl, n-butyl and n-amyl alcohols at different temperatures and pressures, Izv. Akad. Nauk Azerb. SSr, 1981, (6), 94-97. [all data]

Griigo'ev, Yanin, et al., 1979
Griigo'ev, B.A.; Yanin, G.S.; Rastorguev, Yu.L.; Thermophysical parameters of alcohols, Tr. GIAP, 54, 1979, 57-64. [all data]

Skold, Suurkuusk, et al., 1976
Skold, R.; Suurkuusk, J.; Wadso, I., Thermochemistry of solutions of biochemical model compounds. 7. Aqueous solutions of some amides, t-butanol, and pentanol, J. Chem. Thermodynam., 1976, 8, 1075-1080. [all data]

Paz Andrade, Paz, et al., 1970
Paz Andrade, M.I.; Paz, J.M.; Recacho, E., Contribucion a la microcalorimetria de los calores especificos de solidos y liquidos, An. Quim., 1970, 66, 961-967. [all data]

Phillip, 1939
Phillip, N.M., Adiabatic and isothermal compressibilities of liquids, Proc. Indian Acad. Sci., 1939, A9, 109-120. [all data]

von Reis, 1881
von Reis, M.A., Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht, Ann. Physik [3], 1881, 13, 447-464. [all data]

Timmermans, 1952
Timmermans, J., Freezing points of organic compounds. VVI New determinations., Bull. Soc. Chim. Belg., 1952, 61, 393. [all data]

Tschamler, Richter, et al., 1949
Tschamler, H.; Richter, E.; Wettig, F., Mixtures of Primry Aliphatic Alcohols with Chlorex and Other Organic Substances. Binary Liquid Mixtures XII., Monatsh. Chem., 1949, 80, 749. [all data]

Timmermans and Mattaar, 1921
Timmermans, J.; Mattaar, J.F., Freezing points of orgainic substances VI. New experimental determinations., Bull. Soc. Chim. Belg., 1921, 30, 213. [all data]

Counsell, Lees, et al., 1968, 2
Counsell, J.F.; Lees, E.B.; Martin, J.F., Thermodynamic properties of organic oxygen compounds. Part XIX. Low-temperature heat capacity and entropy of propan-1-ol, 2-methylpropan-1-ol, and pentan-1-ol, J. Chem. Soc., A, 1968, 1819, https://doi.org/10.1039/j19680001819 . [all data]

Parks, Huffman, et al., 1933, 2
Parks, G.S.; Huffman, H.M.; Barmore, M., Thermal Data on Organic Compounds. XI. The Heat Capacities, Entropies and Free Energies of Ten Compounds Containing Oxygen or Nitrogen, J. Am. Chem. Soc., 1933, 55, 7, 2733, https://doi.org/10.1021/ja01334a016 . [all data]

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Teja, Lee, et al., 1989
Teja, A.S.; Lee, R.J.; Rosenthal, D.J.; Anselme, M.J., Correlation of the Critical Properties of Alkanes and Alkanols in 5th IUPAC Conference on Alkanes and AlkanolsGradisca, 1989. [all data]

Smith, Anselme, et al., 1986
Smith, R.L.; Anselme, M.J.; Teja, A.S., The Critical Temperatures of Isomeric Pentanols and Heptanols, Fluid Phase Equilib., 1986, 31, 161. [all data]

Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Wormald and James, 2000
Wormald, Christopher J.; James, Gareth F., Specific Enthalpy Increments for Pentan-1-ol at Temperatures up to 623.2 K and 10.1 MPa, J. Chem. Eng. Data, 2000, 45, 2, 348-352, https://doi.org/10.1021/je990275y . [all data]

Aucejo, Burguet, et al., 1994
Aucejo, Antonio; Burguet, M.C.; Monton, Juan B.; Munoz, Rosa; Sanchotello, Margarita; Vazquez, M. Isabel, Isothermal Vapor-Liquid Equilibria of 1-Pentanol with 2-Methyl-1-butanol, 2-Methyl-2-butanol, and 3-Methyl-2-butanol, J. Chem. Eng. Data, 1994, 39, 3, 578-580, https://doi.org/10.1021/je00015a040 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Ambrose, Sprake, et al., 1972
Ambrose, D.; Sprake, C.H.S.; Townsend, R., Thermodynamic properties of organic oxygen compounds XXIX. The vapour pressure of diethyl ether, The Journal of Chemical Thermodynamics, 1972, 4, 2, 247-254, https://doi.org/10.1016/0021-9614(72)90063-8 . [all data]

Majer, Svoboda, et al., 1985
Majer, V.; Svoboda, V.; Lencka, M., Enthalpies of vaporization and cohesive energies of dimethylpyridines and trimethylpyridines, The Journal of Chemical Thermodynamics, 1985, 17, 4, 365-370, https://doi.org/10.1016/0021-9614(85)90133-8 . [all data]

Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]

Counsell, Fenwick, et al., 1970
Counsell, J.F.; Fenwick, J.O.; Lees, E.B., Thermodynamic properties of organic oxygen compounds 24. Vapour heat capacities and enthalpies of vaporization of ethanol, 2-methylpropan-1-ol, and pentan-1-ol, The Journal of Chemical Thermodynamics, 1970, 2, 3, 367-372, https://doi.org/10.1016/0021-9614(70)90007-8 . [all data]

Kemme and Kreps, 1969
Kemme, Herbert R.; Kreps, Saul I., Vapor pressure of primary n-alkyl chlorides and alcohols, J. Chem. Eng. Data, 1969, 14, 1, 98-102, https://doi.org/10.1021/je60040a011 . [all data]

Ambrose, Sprake, et al., 1975
Ambrose, D.; Sprake, C.H.S.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds. XXXVII. Vapour Pressures of Methanol, Ethanol, Pentan-1-ol, and Octan-1-ol from the Normal Boiling Temperature to the Critical Temperature, J. Chem. Thermodyn., 1975, 7, 2, 185-190, https://doi.org/10.1016/0021-9614(75)90267-0 . [all data]

Ambrose and Sprake, 1970
Ambrose, D.; Sprake, C.H.S., Thermodynamic properties of organic oxygen compounds XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols, The Journal of Chemical Thermodynamics, 1970, 2, 5, 631-645, https://doi.org/10.1016/0021-9614(70)90038-8 . [all data]

van Miltenburg and van den Berg, 2004
van Miltenburg, J. Cees; van den Berg, Gerrit J.K., Heat Capacities and Derived Thermodynamic Functions of 1-Propanol between 10 K and 350 K and of 1-Pentanol between 85 K and 370 K, J. Chem. Eng. Data, 2004, 49, 3, 735-739, https://doi.org/10.1021/je0499768 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Higgins and Bartmess, 1998
Higgins, P.R.; Bartmess, J.E., The Gas Phase Acidities of Long Chain Alcohols., Int. J. Mass Spectrom., 1998, 175, 1-2, 71-79, https://doi.org/10.1016/S0168-1176(98)00125-6 . [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T., The gas phase acidity of aliphatic alcohols, J. Am. Chem. Soc., 1983, 105, 2203. [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M., Intermolecular Forces in Organic Clusters, J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024 . [all data]

Connett, 1970
Connett, J.E., Chemical equilibria. Part III. Dehydrogenation of pentan-1-ol, pentan-2-ol, and 3-methylbutan-2-ol, J. Chem. Soc. A, 1970, 1284-1286. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References