Propanal
- Formula: C3H6O
- Molecular weight: 58.0791
- IUPAC Standard InChIKey: NBBJYMSMWIIQGU-UHFFFAOYSA-N
- CAS Registry Number: 123-38-6
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Propionaldehyde; Methylacetaldehyde; Propaldehyde; Propional; Propionic aldehyde; Propylaldehyde; Propylic aldehyde; C2H5CHO; n-Propionaldehyde; Propanalaldehyde; n-Propanal; Aldehyde propionique; Propanaldehyde; NCI-C61029; UN 1275; 1-Propanone; 1-Propanal; Proprionaldehyde; NSC 6493
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -52.18 ± 0.15 | kcal/mol | Cm | Wiberg, Crocker, et al., 1991 | Heat of hydrogenation; ALS |
ΔfH°liquid | -51.55 ± 0.36 | kcal/mol | Eqk | Connett, 1972 | At 473-524 K; ALS |
ΔfH°liquid | -52.64 ± 0.23 | kcal/mol | Chyd | Buckley and Cox, 1967 | ALS |
ΔfH°liquid | -52.95 ± 0.18 | kcal/mol | Ccb | Tjebbes, 1962 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -434.16 ± 0.18 | kcal/mol | Ccb | Tjebbes, 1962 | Corresponding ΔfHºliquid = -52.94 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 50.88 | cal/mol*K | N/A | Korkhov and Vasil'ev, 1977 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
38.03 | 298.15 | Korkhov and Vasil'ev, 1977 | T = 15 to 335 K.; DH |
32.19 | 298. | von Reis, 1881 | T = 288 to 328 K.; DH |
Phase change data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 322. ± 2. | K | AVG | N/A | Average of 38 out of 40 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 180. ± 20. | K | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 171.32 | K | N/A | Vasil'ev and Petrov, 1984 | Uncertainty assigned by TRC = 0.01 K; TRC |
Ttriple | 171.15 | K | N/A | Korkhov and Vasil'ev, 1977, 2 | Uncertainty assigned by TRC = 0.1 K; TRC |
Ttriple | 171.32 | K | N/A | Korkhov and Vasil'ev, 1977, 2 | Uncertainty assigned by TRC = 0.05 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 600. ± 200. | K | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 51.91 | atm | N/A | Gude and Teja, 1994 | Uncertainty assigned by TRC = 0.59 atm; by the flow method; TRC |
Pc | 52.01 | atm | N/A | Gude and Teja, 1994 | Uncertainty assigned by TRC = 0.987 atm; by sealed ampule; TRC |
Pc | 52.01 | atm | N/A | Teja and Rosenthal, 1990 | Uncertainty assigned by TRC = 0.987 atm; TRC |
Pc | 67.8000 | atm | N/A | Bougard and Jadot, 1977 | source of data not clear; TRC |
Pc | 67.8000 | atm | N/A | Svoboda, Vesely, et al., 1977 | Uncertainty assigned by TRC = 2.000 atm; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 4.91 | mol/l | N/A | Anselme and Teja, 1990 | Uncertainty assigned by TRC = 0.09 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 7.10 ± 0.07 | kcal/mol | AVG | N/A | Average of 11 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
6.766 | 321.1 | N/A | Majer and Svoboda, 1985 | |
6.7686 | 321.08 | N/A | Korkhov and Vasil'ev, 1977 | DH |
7.24 | 305. | A | Stephenson and Malanowski, 1987 | Based on data from 290. to 322. K. See also Dykyj, 1970.; AC |
7.62 | 265. | EB | Stephenson and Malanowski, 1987 | Based on data from 250. to 330. K. See also Smith and Bonner, 1951.; AC |
7.53 | 278. | N/A | Kim and Kim, 1977 | Based on data from 263. to 373. K.; AC |
7.29 | 301. | N/A | Ambrose and Sprake, 1974 | Based on data from 286. to 321. K.; AC |
6.76 | 321. | N/A | Counsell and Lee, 1972 | AC |
7.03 | 303. | N/A | Counsell and Lee, 1972 | AC |
7.24 | 286. | N/A | Counsell and Lee, 1972 | AC |
Enthalpy of vaporization
ΔvapH =
A exp(-βTr) (1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kcal/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A (kcal/mol) | β | Tc (K) | Reference | Comment |
---|---|---|---|---|---|
286. to 321. | 10.63 | 0.2676 | 496.2 | Majer and Svoboda, 1985 |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
2.053 | 171.32 | Korkhov and Vasil'ev, 1977 | DH |
2.05 | 171.3 | Domalski and Hearing, 1996 | AC |
Reaction thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C3H5O- + =
By formula: C3H5O- + H+ = C3H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 365.2 ± 2.1 | kcal/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 366.0 ± 2.4 | kcal/mol | G+TS | Cumming and Kebarle, 1978 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 358.7 ± 2.0 | kcal/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 359.4 ± 2.0 | kcal/mol | IMRE | Cumming and Kebarle, 1978 | gas phase; B |
By formula: C3H6O + H2 = C3H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -20.14 ± 0.09 | kcal/mol | Cm | Wiberg, Crocker, et al., 1991 | liquid phase; solvent: Triglyme; Heat of hydrogenation; ALS |
ΔrH° | -16.62 ± 0.18 | kcal/mol | Eqk | Connett, 1972 | gas phase; At 473-524 K; ALS |
ΔrH° | -15.72 ± 0.16 | kcal/mol | Chyd | Buckley and Cox, 1967 | gas phase; ALS |
By formula: NO- + C3H6O = (NO- • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 38.1 | kcal/mol | ICR | Reents and Freiser, 1981 | gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978, ref. to PA(NH3)=208. kcal/mol; M |
(C3H7O- • 4294967295) + = C3H7O-
By formula: (C3H7O- • 4294967295C3H6O) + C3H6O = C3H7O-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41.0 ± 2.2 | kcal/mol | N/A | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
By formula: Mg+ + C3H6O = (Mg+ • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 65. ± 5. | kcal/mol | ICR | Operti, Tews, et al., 1988 | gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M |
By formula: C5H12O2 + H2O = C3H6O + 2CH4O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.999 ± 0.017 | kcal/mol | Eqk | Wiberg and Squires, 1981 | liquid phase; ALS |
By formula: C3H6O = C3H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -23.6 | kcal/mol | Eqk | Polkovnikova and Lapiclus, 1974 | gas phase; At 300 K; ALS |
By formula: C3H6O = C3H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -7.7 | kcal/mol | Eqk | Polkovnikova and Lapiclus, 1974 | gas phase; At 300 K; ALS |
IR Spectrum
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Coblentz Society, Inc.
Gas Phase Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Notice: Except where noted, spectra from this collection were measured on dispersive instruments, often in carefully selected solvents, and hence may differ in detail from measurements on FTIR instruments or in other chemical environments. More information on the manner in which spectra in this collection were collected can be found here.
Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.
Additional Data
View scan of original (hardcopy) spectrum.
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Owner | COBLENTZ SOCIETY Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | DOW CHEMICAL COMPANY |
Source reference | COBLENTZ NO. 8785 |
Date | 1964 |
Name(s) | propionaldehyde PROPIONALDEHYDE |
State | GAS (100 mmHg, N2 ADDED, TOTAL PRESSURE 600 mmHg) |
Instrument | DOW KBr FOREPRISM-GRATING |
Instrument parameters | GRATING CHANGED AT 5.0, 7.5, 15.0 MICRON SPECTRAL CONTAMINATION DUE TO H2O IN THE 1600 CM-1 REGION. ABSORPTION DUE TO CCl4 AT 797 AND 780 CM-1. |
Path length | 5 CM |
Resolution | 2 |
Sampling procedure | TRANSMISSION |
Data processing | DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS) |
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M.,
Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups,
J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]
Connett, 1972
Connett, J.E.,
Chemical equilibria. 5. Measurement of equilibrium constants for the dehydrogenation of propanol by a vapour flow technique,
J. Chem. Thermodyn., 1972, 4, 233-237. [all data]
Buckley and Cox, 1967
Buckley, E.; Cox, J.D.,
Chemical equilibria. Part 2.-Dehydrogenation of propanol and butanol,
Trans. Faraday Soc., 1967, 63, 895-901. [all data]
Tjebbes, 1962
Tjebbes, J.,
Heats of combustion of propanal and 2-methyl propanal,
Acta Chem. Scand., 1962, 16, 953-857. [all data]
Korkhov and Vasil'ev, 1977
Korkhov, A.D.; Vasil'ev, I.A.,
Heat capacity and thermodynamic functions of propanal at low temperatures,
Termodin. Org. Soedin., 1977, (6), 34-37. [all data]
von Reis, 1881
von Reis, M.A.,
Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht,
Ann. Physik [3], 1881, 13, 447-464. [all data]
Vasil'ev and Petrov, 1984
Vasil'ev, I.A.; Petrov, V.M.,
Thermodynamic Properties of Oxygen-containing Organic Compounds, Handbook, Soedinenii: Khimya, Leningrad, p 240, 1984. [all data]
Korkhov and Vasil'ev, 1977, 2
Korkhov, A.D.; Vasil'ev, I.A.,
Heat capacity and thermodynamic functions of propionaldehyde at low temperatures.,
Termodin. Org. Soedin., 1977, No. 6, 34. [all data]
Gude and Teja, 1994
Gude, M.T.; Teja, A.S.,
The Critical Properties of Several n-Alkanals, Tetralin and NMP,
Experimental Results for DIPPR 1990-91 Projects on Phase Equilibria and Pure Component Properties, 1994, 1994, DIPPR Data Series No. 2, p.174-83. [all data]
Teja and Rosenthal, 1990
Teja, A.S.; Rosenthal, D.J.,
The Critical Pressures and Temperatures of Twelve Substances Using A Low Residence Time Flow Apparatus,
AIChE Symp. Ser., 1990, 86, 279, 133-7. [all data]
Bougard and Jadot, 1977
Bougard, J.; Jadot, R.,
Isothermal Vapor-Liquid Equilibria for the System 1,2-Dichloropropane- Propanal,
J. Chem. Eng. Data, 1977, 22, 88. [all data]
Svoboda, Vesely, et al., 1977
Svoboda, V.; Vesely, F.; Holub, R.; Pick, J.,
Heats of vaporization of alkyl acetates and propionates,
Collect. Czech. Chem. Commun., 1977, 42, 943-51. [all data]
Anselme and Teja, 1990
Anselme, M.J.; Teja, A.S.,
The critical properties of rapidly reacting substances,
AIChE Symp. Ser., 1990, 86, 279, 128-32. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Dykyj, 1970
Dykyj, J.,
Petrochemica, 1970, 10, 2, 51. [all data]
Smith and Bonner, 1951
Smith, Thomas E.; Bonner, Robert F.,
Acetaldehyde, Propionaldehyde, and n-Butyraldehyde,
Ind. Eng. Chem., 1951, 43, 5, 1169-1173, https://doi.org/10.1021/ie50497a049
. [all data]
Kim and Kim, 1977
Kim, B.C.; Kim, D.H.,
Hwahak Kwa Hwahak Kongop, 1977, 20, 232. [all data]
Ambrose and Sprake, 1974
Ambrose, D.; Sprake, C.H.S.,
Thermodynamic properties of organic oxygen compounds 32. Vapour pressure and second virial coefficient of propanal,
The Journal of Chemical Thermodynamics, 1974, 6, 5, 453-456, https://doi.org/10.1016/0021-9614(74)90006-8
. [all data]
Counsell and Lee, 1972
Counsell, J.F.; Lee, D.A.,
Thermodynamic properties of organic oxygen compounds 30. Vapour heat capacity and enthalpy of vaporization of propanal,
The Journal of Chemical Thermodynamics, 1972, 4, 6, 915-917, https://doi.org/10.1016/0021-9614(72)90013-4
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P.,
Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A),
Can. J. Chem., 1978, 56, 1. [all data]
Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S.,
Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes,
J. Am. Chem. Soc., 1981, 103, 2791. [all data]
Farid and McMahon, 1978
Farid, R.; McMahon, T.B.,
Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy,
Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0
. [all data]
Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S.,
Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques,
J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020
. [all data]
Wiberg and Squires, 1981
Wiberg, K.B.; Squires, R.R.,
Thermochemical studies of carbonyl reactions. 2. Steric effects in acetal and ketal hydrolysis,
J. Am. Chem. Soc., 1981, 103, 4473-4478. [all data]
Polkovnikova and Lapiclus, 1974
Polkovnikova, A.G.; Lapiclus, V.L.,
Calculation of the equilibrium and heat of isomerization of propylene oxide on a lithium phosphate catalyst,
Neftekhimiya, 1974, 14, 113-115. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid Pc Critical pressure S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.