2-Propanol, 2-methyl-
- Formula: C4H10O
- Molecular weight: 74.1216
- IUPAC Standard InChIKey: DKGAVHZHDRPRBM-UHFFFAOYSA-N
- CAS Registry Number: 75-65-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: tert-Butyl alcohol; tert-Butanol; Ethanol, 1,1-Dimethyl-; Trimethylcarbinol; Trimethylmethanol; 1,1-Dimethylethanol; 2-Methyl-2-propanol; tert-C4H9OH; t-Butanol; tert-Butyl hydroxide; 2-Methylpropanol-2; 2-Methylpropan-2-ol; Alcool butylique tertiaire; Butanol tertiaire; t-Butyl hydroxide; Methanol, trimethyl-; NCI-C55367; 2-Methyl n-propan-2-ol; Methyl-2 propanol-2; Tert.-butyl alcohol
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -85.86 ± 0.20 | kcal/mol | Eqk | Wiberg and Hao, 1991 | Heat of hydration; ALS |
ΔfH°liquid | -85.87 ± 0.19 | kcal/mol | Ccb | Skinner and Snelson, 1960 | ALS |
ΔfH°liquid | -85.0 | kcal/mol | Eqk | Taft and Riesz, 1955 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -631.92 ± 0.19 | kcal/mol | Ccb | Skinner and Snelson, 1960 | Corresponding ΔfHºliquid = -85.86 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 45.29 | cal/mol*K | N/A | Parks, Kelley, et al., 1929 | Extrapolation bloew 90 K, 45.19 J/mol*K. Revision of previous data.; DH |
S°liquid | 47.20 | cal/mol*K | N/A | Parks and Anderson, 1926 | Extrapolation below 90 K, 53.35 J/mol*K.; DH |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -629.4 | kcal/mol | Ccb | Raley, Rust, et al., 1948 | Corresponding ΔfHºsolid = -88.4 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°solid,1 bar | 40.839 | cal/mol*K | N/A | Oetting F.L., 1963 | crystaline, I phase; DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
51.475 | 298.15 | Caceres-Alonso, Costas, et al., 1988 | DH |
53.031 | 299.15 | Okano, Ogawa, et al., 1988 | DH |
50.2 | 298. | De Visser, Perron, et al., 1977 | DH |
50.2 | 298.15 | De Visser, Perron, et al., 1977, 2 | T = 298.15, 313.15, 328.15 K.; DH |
53.75 | 298.15 | Murthy and Subrahmanyam, 1977 | DH |
52.25 | 298.15 | Skold, Suurkuusk, et al., 1976 | DH |
53.70 | 300. | Parks and Anderson, 1926 | T = 87 to 300 K. Value is unsmoothed experimental datum.; DH |
Constant pressure heat capacity of solid
Cp,solid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
34.921 | 298.15 | Oetting F.L., 1963 | crystaline, I phase; T = 15 to 330 K.; DH |
IR Spectrum
Go To: Top, Condensed phase thermochemistry data, References, Notes
Data compiled by: Coblentz Society, Inc.
- GAS (30 mmHg, N2 ADDED, TOTAL PRESSURE 600 mmHg); DOW KBr FOREPRISM-GRATING; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 2 cm-1 resolution
- LIQUID (NEAT); PERKIN-ELMER 521 (GRATING); (ADJUSTED addcm-115-5-2); 2 cm-1 resolution
- SOLUTION (10.5% IN CCl4 FOR 3800-1300, 5.2% IN CS2 FOR 1300-650, AND 10.5% IN CCl4 FOR 650-250 CM-1) VERSUS SOLVENT; Not specified, most likely a grating or hybrid spectrometer.; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
References
Go To: Top, Condensed phase thermochemistry data, IR Spectrum, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Wiberg and Hao, 1991
Wiberg, K.B.; Hao, S.,
Enthalpies of hydration of alkenes. 4. Formation of acyclic tert-alcohols,
J. Org. Chem., 1991, 56, 5108-5110. [all data]
Skinner and Snelson, 1960
Skinner, H.A.; Snelson, A.,
The heats of combustion of the four isomeric butyl alcohols,
Trans. Faraday Soc., 1960, 56, 1776-1783. [all data]
Taft and Riesz, 1955
Taft, R.W., Jr.; Riesz, P.,
Thermodynamic properties for the system isobutene-t-butyl alcohol,
J. Am. Chem. Soc., 1955, 77, 902-904. [all data]
Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M.,
Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds,
J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]
Parks and Anderson, 1926
Parks, G.S.; Anderson, C.T.,
Thermal data on organic compounds. III. The heat capacities, entropies and free energies of tertiary butyl alcohol, mannitol, erythritol and normal butyric acid,
J. Am. Chem. Soc., 1926, 48, 1506-1512. [all data]
Raley, Rust, et al., 1948
Raley, J.H.; Rust, F.F.; Vaughan, W.E.,
Decompositions of Di-t-alkyl peroxides. I. Kinetics,
J. Am. Chem. Soc., 1948, 70, 88-94. [all data]
Oetting F.L., 1963
Oetting F.L.,
The heat capacity and entropy of 2-methyl-2-propanol from 15 to 330 K,
J. Phys. Chem., 1963, 67, 2757-2761. [all data]
Caceres-Alonso, Costas, et al., 1988
Caceres-Alonso, M.; Costas, M.; Andreoli-Ball, L.; Patterson, D.,
Steric effects on the self-association of branched and cyclic alcohols in inert solvents. Apparent heat capacities of secondary and tertiary alcohols in hydrocarbons,
Can. J. Chem., 1988, 66, 989-998. [all data]
Okano, Ogawa, et al., 1988
Okano, T.; Ogawa, H.; Murakami, S.,
Molar excess volumes, isentropic compressions, and isobaric heat capacities of methanol-isomeric butanol systems at 298.15 K,
Can. J. Chem., 1988, 66, 713-717. [all data]
De Visser, Perron, et al., 1977
De Visser, C.; Perron, G.; Desnoyers, J.E.,
Volumes and heat capacities of ternary aqueous systems at 25°C. Mixtures of urea, tert-butyl alcohol, N,N-dimethylformamide, and water,
J. Amer. Chem. Soc., 1977, 99, 5894-5900. [all data]
De Visser, Perron, et al., 1977, 2
De Visser, C.; Perron, G.; Desnoyers, J.E.,
The heat capacities, volumes and expansibilities of tert-butyl alcohol - water mixtures form 6 to 65°C,
Can. J. Chem., 1977, 55, 856-762. [all data]
Murthy and Subrahmanyam, 1977
Murthy, N.M.; Subrahmanyam, S.V.,
Behaviour of excess heat capacity of aqueous non-electrolytes,
Indian J. Pure Appl. Phys., 1977, 15, 485-489. [all data]
Skold, Suurkuusk, et al., 1976
Skold, R.; Suurkuusk, J.; Wadso, I.,
Thermochemistry of solutions of biochemical model compounds. 7. Aqueous solutions of some amides, t-butanol, and pentanol,
J. Chem. Thermodynam., 1976, 8, 1075-1080. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, IR Spectrum, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid Cp,solid Constant pressure heat capacity of solid S°liquid Entropy of liquid at standard conditions S°solid,1 bar Entropy of solid at standard conditions (1 bar) ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.