Nitric oxide

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas90.29kJ/molReviewChase, 1998Data last reviewed in June, 1963
Quantity Value Units Method Reference Comment
gas,1 bar210.76J/mol*KReviewChase, 1998Data last reviewed in June, 1963

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1200.1200. to 6000.
A 23.8349135.99169
B 12.588780.957170
C -1.139011-0.148032
D -1.4974590.009974
E 0.214194-3.004088
F 83.3578373.10787
G 237.1219246.1619
H 90.2911490.29114
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in June, 1963 Data last reviewed in June, 1963

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Nitric oxide anion + Nitric oxide = (Nitric oxide anion • Nitric oxide)

By formula: NO- + NO = (NO- • NO)

Quantity Value Units Method Reference Comment
Δr57.7kJ/molPILinn, Ono, et al., 1981gas phase; M
Δr56.9kJ/molPINg, Tiedemann, et al., 1977gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
29.296.SAMSPuckett and Teague, 1971gas phase; M

(Nitric oxide anion • Nitric oxide) + Nitric oxide = (Nitric oxide anion • 2Nitric oxide)

By formula: (NO- • NO) + NO = (NO- • 2NO)

Quantity Value Units Method Reference Comment
Δr31.kJ/molPILinn, Ono, et al., 1981gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
7.9296.SAMSPuckett and Teague, 1971gas phase; M

(Nickel ion (1+) • Nitric oxide) + Nitric oxide = (Nickel ion (1+) • 2Nitric oxide)

By formula: (Ni+ • NO) + NO = (Ni+ • 2NO)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
115. (+5.0,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID; M

Nickel ion (1+) + Nitric oxide = (Nickel ion (1+) • Nitric oxide)

By formula: Ni+ + NO = (Ni+ • NO)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
123. (+6.7,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID; M

(Nitric oxide anion • 2Nitric oxide) + Nitric oxide = (Nitric oxide anion • 3Nitric oxide)

By formula: (NO- • 2NO) + NO = (NO- • 3NO)

Quantity Value Units Method Reference Comment
Δr15.kJ/molPILinn, Ono, et al., 1981gas phase; M

(Nitric oxide anion • 3Nitric oxide) + Nitric oxide = (Nitric oxide anion • 4Nitric oxide)

By formula: (NO- • 3NO) + NO = (NO- • 4NO)

Quantity Value Units Method Reference Comment
Δr15.kJ/molPILinn, Ono, et al., 1981gas phase; M

(Nitric oxide anion • 4Nitric oxide) + Nitric oxide = (Nitric oxide anion • 5Nitric oxide)

By formula: (NO- • 4NO) + NO = (NO- • 5NO)

Quantity Value Units Method Reference Comment
Δr9.6kJ/molPILinn, Ono, et al., 1981gas phase; M

Ethyl-nitrite- = Nitric oxide + Ethoxy radical

By formula: C2H5NO2 = NO + C2H5O

Quantity Value Units Method Reference Comment
Δr158.kJ/molKinRebbert and Laidler, 1952gas phase; ALS

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.00191400.LN/A 
0.00191700.QN/AOnly the tabulated data between T = 273. K and T = 303. K from missing citation was used to derive kH and -Δ kH/R. Above T = 303. K the tabulated data could not be parameterized by equation (reference missing) very well. The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by missing citation. The quantities A and α from missing citation were assumed to be identical.
0.0019 CN/A 
0.00191500.LN/A 
0.0014 MN/A 
7.9×10-73800.LN/A 

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Linn, Ono, et al., 1981
Linn, S.H.; Ono, Y.; Ng, C.Y., Molecular Beam Photoionization Study of CO, N2, and NO Dimers and Clusters, J. Chem. Phys., 1981, 74, 6, 3342, https://doi.org/10.1063/1.441486 . [all data]

Ng, Tiedemann, et al., 1977
Ng, C.Y.; Tiedemann, P.W.; Mahan, B.H.; Lee, Y.T., The Binding Energy between NO and NO+, J. Chem. Phys., 1977, 66, 9, 3985, https://doi.org/10.1063/1.434450 . [all data]

Puckett and Teague, 1971
Puckett, L.J.; Teague, A.W., Production of H3O+.nH2O from NO+ Precursor in NO - H2O Gas Mixtures, J. Chem. Phys., 1971, 54, 6, 2564, https://doi.org/10.1063/1.1675213 . [all data]

Khan, Steele, et al., 1995
Khan, F.A.; Steele, D.L.; Armentrout, P.B., Ligand effects in organometallic thermochemistry: The sequential bond energies of Ni(CO)x+ and Ni(N2)x+ (x = 1-4) and Ni(NO)x+ (x = 1-3) [Data derived from reported bond energies taking value of 8.273±0.046 eV for IE[Ni(CO)4]], J. Phys. Chem., 1995, 99, 7819. [all data]

Rebbert and Laidler, 1952
Rebbert, R.E.; Laidler, K.J., Kinetics of the decomposition of diethyl peroxide, J. Chem. Phys., 1952, 20, 574-577. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References