1-Propene, 2-methyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C4H7- + Hydrogen cation = 1-Propene, 2-methyl-

By formula: C4H7- + H+ = C4H8

Quantity Value Units Method Reference Comment
Δr1644. ± 7.5kJ/molEndoWenthold, Hu, et al., 1999gas phase; B
Δr1619. ± 8.4kJ/molD-EAWenthold, Polak, et al., 1996gas phase; B
Δr1633. ± 9.6kJ/molG+TSBartmess and Burnham, 1984gas phase; B
Quantity Value Units Method Reference Comment
Δr1613. ± 7.9kJ/molH-TSWenthold, Hu, et al., 1999gas phase; B
Δr1588. ± 8.8kJ/molH-TSWenthold, Polak, et al., 1996gas phase; B
Δr1602. ± 9.2kJ/molIMREBartmess and Burnham, 1984gas phase; B

NH4+ + 1-Propene, 2-methyl- = (NH4+ • 1-Propene, 2-methyl-)

By formula: H4N+ + C4H8 = (H4N+ • C4H8)

Quantity Value Units Method Reference Comment
Δr146.kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; condensation; M
Δr146.kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1990gas phase; forms t-C4H9NH3+; M
Quantity Value Units Method Reference Comment
Δr155.J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; condensation; M
Δr164.J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1990gas phase; forms t-C4H9NH3+; M

Propane, 2-chloro-2-methyl- = 1-Propene, 2-methyl- + Hydrogen chloride

By formula: C4H9Cl = C4H8 + HCl

Quantity Value Units Method Reference Comment
Δr74. ± 2.kJ/molEqkHowlett, 1955gas phase; ALS
Δr74.06kJ/molEqkHowlett, 1951gas phase; Hf-gas-(390) -44.4 kcal/mol; ALS
Δr72. ± 2.kJ/molEqkKistiakowsky and Stauffer, 1937gas phase; ALS

1-Propene, 2-methyl- + Ethanol = Propane, 2-ethoxy-2-methyl-

By formula: C4H8 + C2H6O = C6H14O

Quantity Value Units Method Reference Comment
Δr-32.0kJ/molCmSola, Pericas, et al., 1995liquid phase; ALS
Δr-32.0kJ/molKinSola, Pericas, et al., 1995liquid phase; ALS
Δr-62. ± 2.kJ/molEqkIborra, Izquierdo, et al., 1989gas phase; GC; ALS

C3H9Si+ + 1-Propene, 2-methyl- = (C3H9Si+ • 1-Propene, 2-methyl-)

By formula: C3H9Si+ + C4H8 = (C3H9Si+ • C4H8)

Quantity Value Units Method Reference Comment
Δr153.kJ/molPHPMSLi and Stone, 1989gas phase; condensation; M
Quantity Value Units Method Reference Comment
Δr179.J/mol*KPHPMSLi and Stone, 1989gas phase; condensation; M

1-Propene, 2-methyl- + Hydrogen = Isobutane

By formula: C4H8 + H2 = C4H10

Quantity Value Units Method Reference Comment
Δr-117.8 ± 0.42kJ/molChydKistiakowsky, Ruhoff, et al., 1935gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -118.78 ± 0.75 kJ/mol; At 355 °K; ALS

tert-Butyl iodide = Hydrogen iodide + 1-Propene, 2-methyl-

By formula: C4H9I = HI + C4H8

Quantity Value Units Method Reference Comment
Δr-81. ± 2.kJ/molEqkBenson and Amano, 1962gas phase; ALS
Δr-80.1 ± 4.2kJ/molEqkJones and Ogg, 1937gas phase; At 408-464 K; ALS

1-Propene, 2-methyl- + Isopropyl Alcohol = Propane, 2-methyl-2-(1-methylethoxy)-

By formula: C4H8 + C3H8O = C7H16O

Quantity Value Units Method Reference Comment
Δr-22.9 ± 1.3kJ/molEqkCalderon, Tejero, et al., 1997liquid phase; ALS
Δr-21.7 ± 1.6kJ/molCmSola, Pericas, et al., 1997liquid phase; ALS

Lithium ion (1+) + 1-Propene, 2-methyl- = (Lithium ion (1+) • 1-Propene, 2-methyl-)

By formula: Li+ + C4H8 = (Li+ • C4H8)

Quantity Value Units Method Reference Comment
Δr120.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

1-Propene, 2-methyl- + Hydrogen chloride = Propane, 2-chloro-2-methyl-

By formula: C4H8 + HCl = C4H9Cl

Quantity Value Units Method Reference Comment
Δr-63.1 ± 1.8kJ/molCmArnett and Pienta, 1980liquid phase; solvent: Methylene chloride; Hydrochloronation; ALS

1-Propene, 2-methyl- + Water = 2-Propanol, 2-methyl-

By formula: C4H8 + H2O = C4H10O

Quantity Value Units Method Reference Comment
Δr-53.451kJ/molEqkEberz and Lucas, 1934gas phase; solvent: Aqueous; Heat of hydration; ALS

Sodium ion (1+) + 1-Propene, 2-methyl- = (Sodium ion (1+) • 1-Propene, 2-methyl-)

By formula: Na+ + C4H8 = (Na+ • C4H8)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
41.8298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

(CAS Reg. No. 38130-30-2 • 42949672951-Propene, 2-methyl-) + 1-Propene, 2-methyl- = CAS Reg. No. 38130-30-2

By formula: (CAS Reg. No. 38130-30-2 • 4294967295C4H8) + C4H8 = CAS Reg. No. 38130-30-2

Quantity Value Units Method Reference Comment
Δr64.9 ± 8.8kJ/molN/ADePuy, Gronert, et al., 1989gas phase; B

(i-C4H9 • 42949672951-Propene, 2-methyl-) + 1-Propene, 2-methyl- = i-C4H9

By formula: (C4H9 • 4294967295C4H8) + C4H8 = C4H9

Quantity Value Units Method Reference Comment
Δr64.0 ± 8.8kJ/molN/ADePuy, Gronert, et al., 1989gas phase; B

Propane, 2-methoxy-2-methyl- = 1-Propene, 2-methyl- + Methyl Alcohol

By formula: C5H12O = C4H8 + CH4O

Quantity Value Units Method Reference Comment
Δr39.8 ± 0.4kJ/molCmArntz and Gottlieb, 1985gas phase; At 319K; ALS

Propane, 1,2-dibromo-2-methyl- = 1-Propene, 2-methyl- + Bromine

By formula: C4H8Br2 = C4H8 + Br2

Quantity Value Units Method Reference Comment
Δr139.7 ± 0.46kJ/molCmSunner and Wulff, 1974liquid phase; ALS

1-Propene, 2-methyl- + 2-Butanol = 2-(tert-butoxy)butane

By formula: C4H8 + C4H10O = C8H18O

Quantity Value Units Method Reference Comment
Δr-37.7 ± 2.4kJ/molEqkSharonov, Mishentseva, et al., 1991liquid phase; ALS

1-Propene, 2-methyl- + 1-Propanol, 2-methyl- = Propane, 1-(1,1-dimethylethoxy)-2-methyl-

By formula: C4H8 + C4H10O = C8H18O

Quantity Value Units Method Reference Comment
Δr-36.3 ± 1.8kJ/molEqkSharonov, Mishentseva, et al., 1991liquid phase; ALS

1-Propene, 2-methyl- + 1-Butanol = 1-Tert-butoxybutane

By formula: C4H8 + C4H10O = C8H18O

Quantity Value Units Method Reference Comment
Δr-34.8 ± 2.7kJ/molEqkSharonov, Mishentseva, et al., 1991liquid phase; ALS

Propane, 2-ethoxy-2-methyl- = 1-Propene, 2-methyl- + Ethanol

By formula: C6H14O = C4H8 + C2H6O

Quantity Value Units Method Reference Comment
Δr35.5 ± 1.9kJ/molEqkSharonov, Rozhnov, et al., 1995liquid phase; ALS

Propane, 2-bromo-2-methyl- = 1-Propene, 2-methyl- + Hydrogen chloride

By formula: C4H9Br = C4H8 + HCl

Quantity Value Units Method Reference Comment
Δr79. ± 4.kJ/molEqkKistiakowsky and Stauffer, 1937gas phase; ALS

Hydrogen bromide + 1-Propene, 2-methyl- = Propane, 2-bromo-2-methyl-

By formula: HBr + C4H8 = C4H9Br

Quantity Value Units Method Reference Comment
Δr-78.868kJ/molEqkHowlett, 1957gas phase; ALS

1-Propene, 2-methyl- + Methyl Alcohol = Propane, 2-methoxy-2-methyl-

By formula: C4H8 + CH4O = C5H12O

Quantity Value Units Method Reference Comment
Δr-33.8kJ/molCmSol, Perics, et al., 1994liquid phase; ALS

2-Propanol, 2-methyl- = 1-Propene, 2-methyl- + Water

By formula: C4H10O = C4H8 + H2O

Quantity Value Units Method Reference Comment
Δr52.7kJ/molEqkTaft and Riesz, 1955liquid phase; ALS

p-Cresol + 1-Propene, 2-methyl- = Phenol, 2-(1,1-dimethylethyl)-4-methyl-

By formula: C7H8O + C4H8 = C11H16O

Quantity Value Units Method Reference Comment
Δr62.7 ± 2.8kJ/molEqkVerevkin, Nesterova, et al., 1984gas phase; ALS

Phenol, p-tert-butyl- = Phenol + 1-Propene, 2-methyl-

By formula: C10H14O = C6H6O + C4H8

Quantity Value Units Method Reference Comment
Δr71.0 ± 2.1kJ/molEqkVerevkin, 1982gas phase; ALS

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Wenthold, Hu, et al., 1999
Wenthold, P.G.; Hu, J.; Squires, R.R.; Lineberger, W.C., Photoelectron spectroscopy of the trimethylenemethane negative ion, J. Am. Soc. Mass Spectrom., 1999, 10, 9, 800-809, https://doi.org/10.1016/S1044-0305(99)00043-4 . [all data]

Wenthold, Polak, et al., 1996
Wenthold, P.G.; Polak, M.L.; Lineberger, W.C., Photoelectron Spectroscopy of the Allyl and 2-Methylallyl Anions, J. Phys. Chem., 1996, 100, 17, 6920, https://doi.org/10.1021/jp953401n . [all data]

Bartmess and Burnham, 1984
Bartmess, J.E.; Burnham, R., Effect of central substituents on the gas phase acidities of propenes, J. Org. Chem., 1984, 49, 1382. [all data]

Meot-Ner (Mautner) and Sieck, 1991
Meot-Ner (Mautner), M.; Sieck, L.W., Proton affinity ladders from variable-temperature equilibrium measurements. 1. A reevaluation of the upper proton affinity range, J. Am. Chem. Soc., 1991, 113, 12, 4448, https://doi.org/10.1021/ja00012a012 . [all data]

Meot-Ner (Mautner) and Sieck, 1990
Meot-Ner (Mautner), M.; Sieck, L.W., Ion Thermochemistry at High Temperatures. 1. Thermochemistry of the Ammonium Ion from Variable - Temperature Equilibrium Measurements. Proton Transfer, Association, and Decomposition Reactions in Ammonia, Isobutene, and t-Butylamine, J. Phys. Chem., 1990, 94, 19, 7730, https://doi.org/10.1021/j100382a076 . [all data]

Howlett, 1955
Howlett, K.E., The use of equilibrium constants to calculate thermodynamic quantities. Part II, J. Chem. Soc., 1955, 1784-17. [all data]

Howlett, 1951
Howlett, K.E., The use of equilibrium constants to calculate thermodynamic quantities. Part I. Equilibria in the system tert.-butyl chloride, isobutene, hydrogen chloride, J. Chem. Soc., 1951, 1409-1412. [all data]

Kistiakowsky and Stauffer, 1937
Kistiakowsky, G.B.; Stauffer, C.H., The kinetics of gaseous addition of halogen acids to isobutene, 1937, 165-170. [all data]

Sola, Pericas, et al., 1995
Sola, L.; Pericas, M.A.; Cunill, F.; Tejero, J., Thermodynamic and kinetic studies of the liquid phase synthesis of tert-butyl ethyl ether using a reaction calorimeter, Ind. Eng. Chem. Res., 1995, 34, 3718-3725. [all data]

Iborra, Izquierdo, et al., 1989
Iborra, M.; Izquierdo, J.F.; Tejero, J.; Cunill, F., Equilibrium constant for ethyl tert-butyl ether vapor-phase synthesis, J. Chem. Eng. Data, 1989, 34, 1-5. [all data]

Li and Stone, 1989
Li, X.; Stone, J.A., Determination of the beta silicon effect from a mass spectrometric study of the association of trimethylsilylium ion with alkenes, J. Am. Chem. Soc., 1989, 111, 15, 5586, https://doi.org/10.1021/ja00197a013 . [all data]

Kistiakowsky, Ruhoff, et al., 1935
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. II. Hydrogenation of some simpler olefinic hydrocarbons, J. Am. Chem. Soc., 1935, 57, 876-882. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Benson and Amano, 1962
Benson, S.W.; Amano, A., Thermodynamic properties of tertiary iodides, J. Chem. Phys., 1962, 37, 197-198. [all data]

Jones and Ogg, 1937
Jones, J.L.; Ogg, R.A., Jr., The equilibrium (CH3)3CI = (CH3)2C = CH2 + HI, J. Am. Chem. Soc., 1937, 59, 1943-1945. [all data]

Calderon, Tejero, et al., 1997
Calderon, A.; Tejero, J.; Izuierdo, J.F.; Iborra, M.; Cunill, F., Equilibrium Constants for the liquid-phase synthesis of isopropyl tert-butyl ether from 2-propanol and isobutene, Ind. Eng. Chem. Res., 1997, 36, 896-902. [all data]

Sola, Pericas, et al., 1997
Sola, L.; Pericas, M.A.; Cunill, F.; Izquierdo, J.F., A comparative thermodynamic and kinetic study of the reaction between olefins and light alcohols leading to branced ethers. Reaction calorimetry study of the formation of tert-amyl methyl ether (TAME) and tert-butyl isopropyl ether (IPTBE), Ind. Eng. Chem. Res., 1997, 36, 2012-2018. [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Arnett and Pienta, 1980
Arnett, E.M.; Pienta, N.J., Stabilities of carbonium ions in solution. 12. Heats of formation of alkyl chlorides as an entree to heats of solvation of aliphatic carbonium ions, J. Am. Chem. Soc., 1980, 102, 3329-3334. [all data]

Eberz and Lucas, 1934
Eberz, W.F.; Lucas, H.J., The hydration of unsaturated compounds. II. The equilibrium between i-butene and t-butanol and the free energy of hydration of i-butene, J. Am. Chem. Soc., 1934, 56, 1230-1234. [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

Arntz and Gottlieb, 1985
Arntz, H.; Gottlieb, K., High-pressure heat-flow calorimeter determination of the enthalpy of reaction for the synthesis of methyl t-butyl ether from methanol and 2-methylpropene, J. Chem. Thermodyn., 1985, 17, 967-972. [all data]

Sunner and Wulff, 1974
Sunner, S.; Wulff, C.A., The enthalpy of formation of 1,1-dibromo-2-methylpropane, J. Chem. Thermodyn., 1974, 6, 287-292. [all data]

Sharonov, Mishentseva, et al., 1991
Sharonov, K.G.; Mishentseva, Y.B.; Rozhnov, A.M.; Miroshnichenko, E.A.; Korchatova, L.I., Molar enthalpies of formation and vaporizqation of t-butoxybutanes and thermodynamics of their synthesis from a butanol and 2-methylpropene I. Equilibria of synthesis reactions of t-butoxybutanes in the liquid phase, J. Chem. Thermodyn., 1991, 23, 141-145. [all data]

Sharonov, Rozhnov, et al., 1995
Sharonov, K.G.; Rozhnov, A.M.; Korol'kov, A.V.; Karaseva, S.Y., Enthalpies of formation of 2-methyl-2-ethoxypropane and 2-ethyl-2-ethoxypropane from equilibrium measurements, J. Chem. Thermodyn., 1995, 27, 751-753. [all data]

Howlett, 1957
Howlett, K.E., The use of equilibrium constants to calculate thermodynamic quantities. Part III. Equilibria in the system tert.-butyl bromideisobutene-hydrogen bromide, J. Chem. Soc., 1957, 2834-2836. [all data]

Sol, Perics, et al., 1994
Sol, L.; Perics, M.A.; Cunill, F.; Iborra, M., Reaction calorimetry study of the liquid-phase synthesis of tert-butyl methyl ether, Ind. Eng. Chem. Res., 1994, 33, 2578-2583. [all data]

Taft and Riesz, 1955
Taft, R.W., Jr.; Riesz, P., Thermodynamic properties for the system isobutene-t-butyl alcohol, J. Am. Chem. Soc., 1955, 77, 902-904. [all data]

Verevkin, Nesterova, et al., 1984
Verevkin, S.P.; Nesterova, T.N.; Rozhnov, A.M., The equilibrium in the dealkylation of o-t-butyl-p-cresol, Russ. J. Phys. Chem. (Engl. Transl.), 1984, 58, 284. [all data]

Verevkin, 1982
Verevkin, S.P., Study of equilibrium of tert-butylphenol dealkylation in the gas phase, Termodin. Organ. Soedin., 1982, 67-70. [all data]


Notes

Go To: Top, Reaction thermochemistry data, References