Oxygen

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
gas,1 bar49.033 ± 0.001cal/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
gas,1 bar49.032cal/mol*KReviewChase, 1998Data last reviewed in March, 1977

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 100. to 700.700. to 2000.2000. to 6000.
A 7.4862197.1779044.997876
B -4.8363562.0967912.562312
C 13.83041-0.953187-0.482910
D -8.7252010.1884110.035002
E -0.001762-0.1772462.209781
F -2.127981-2.7066641.275730
G 58.9853056.4451056.79219
H 0.00.00.0
ReferenceChase, 1998Chase, 1998Chase, 1998
Comment Data last reviewed in March, 1977; New parameter fit January 2009 Data last reviewed in March, 1977; New parameter fit January 2009 Data last reviewed in March, 1977; New parameter fit January 2009

Phase change data

Go To: Top, Gas phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director

Quantity Value Units Method Reference Comment
Tboil90.2KN/AStreng, 1971Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tfus54.8KN/AStreng, 1971Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Ttriple54.33KN/AHenning and Otto, 1936Uncertainty assigned by TRC = 0.06 K; temperature measured with He gas thermometer; TRC
Quantity Value Units Method Reference Comment
Tc154.58KN/APentermann and Wagner, 1978Uncertainty assigned by TRC = 0.0015 K; TRC
Tc154.58KN/AWagner, Ewers, et al., 1976Uncertainty assigned by TRC = 0.0015 K; TRC
Tc155.15KN/ACardoso, 1915Uncertainty assigned by TRC = 0.3 K; 4 determinations with same result; TRC
Quantity Value Units Method Reference Comment
Pc49.77atmN/AWagner, Ewers, et al., 1976Uncertainty assigned by TRC = 0.005 atm; Vapour-pressure measurements give pc=5.04332 MPa at Tc from L.A.Weber, 1970 PRT, IPTS-68, PP+ differential pressure transducer.; TRC
Pc49.3800atmN/ACardoso, 1915Uncertainty assigned by TRC = 0.2999 atm; TRC
Pc49.2700atmN/ACardoso, 1915Uncertainty assigned by TRC = 0.2999 atm; TRC
Pc49.2000atmN/ACardoso, 1915Uncertainty assigned by TRC = 0.2999 atm; TRC
Quantity Value Units Method Reference Comment
ρc13.60mol/lN/APentermann and Wagner, 1978Uncertainty assigned by TRC = 0.014 mol/l; from density measurements 65 to 300 K, Tc from Weber, 1970; TRC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
54.36 to 100.163.85274325.675-5.667Brower and Thodos, 1968Coefficents calculated by NIST from author's data.
54.36 to 154.333.9466340.024-4.144Brower and Thodos, 1968Coefficents calculated by NIST from author's data.

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


References

Go To: Top, Gas phase thermochemistry data, Phase change data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Streng, 1971
Streng, A.G., Miscibility and Compatibility of Some Liquid and Solidified Gases at Low Temperature, J. Chem. Eng. Data, 1971, 16, 357. [all data]

Henning and Otto, 1936
Henning, F.; Otto, J., Vapor pressure curves and triple points in the temperature region from 14 to 90 k, Phys. Z., 1936, 37, 633-8. [all data]

Pentermann and Wagner, 1978
Pentermann, W.; Wagner, W., New pressure-density-temperature measurements and new rational equations for the saturated liquid and vapor densities of oxygen, J. Chem. Thermodyn., 1978, 10, 1161-1172. [all data]

Wagner, Ewers, et al., 1976
Wagner, W.; Ewers, J.; Pentermann, W., A New Vapor-Pressure Measurement and a New Rational Vapor-Pressure Equation for Oxygen, J. Chem. Thermodyn., 1976, 8, 1049. [all data]

Cardoso, 1915
Cardoso, E., Study of the Critical Point of Several Difficultly LIquifiable Gases: Nitrogen, Carbon Monoxide, Oxygen and Methane, J. Chim. Phys. Phys.-Chim. Biol., 1915, 13, 312. [all data]

Brower and Thodos, 1968
Brower, G.T.; Thodos, G., Vapor Pressures of Liquid Oxygen Between the Triple Point and Critical Point, J. Chem. Eng. Data, 1968, 13, 2, 262-264, https://doi.org/10.1021/je60037a038 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, References