α-Methylstyrene
- Formula: C9H10
- Molecular weight: 118.1757
- IUPAC Standard InChIKey: XYLMUPLGERFSHI-UHFFFAOYSA-N
- CAS Registry Number: 98-83-9
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Benzene, (1-methylethenyl)-; Styrene, α-methyl-; α-Methylstyrol; β-Phenylpropylene; Isopropenylbenzene; 1-Methyl-1-phenylethylene; 1-Phenyl-1-methylethylene; 1-Propene, 2-phenyl-; 2-Phenyl-1-propene; 2-Phenylpropene; (1-Methylethenyl)benzene; AS-Methylphenylethylene; β-phenylpropene; α-Methylstyreen; α-Metil-stirolo; Isopropenil-benzolo; Isopropenyl-benzeen; Isopropenyl-benzol; 2-Phenylpropylene; UN 2303; Benzene, isopropenyl-; 2-Phenyl-2-propene; 1-Methyl-1-phenylethene; NSC 9400; a-methylstyrene
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 28.27 ± 0.34 | kcal/mol | Eqk | Guthrie, 1978 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°gas | -1215.05 | kcal/mol | Ccb | Krall and Roberts, 1958 | Corresponding ΔfHºgas = 27.01 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
10.88 | 50. | Thermodynamics Research Center, 1997 | p=1 bar.; GT |
13.72 | 100. | ||
17.63 | 150. | ||
22.50 | 200. | ||
30.679 | 273.15 | ||
33.578 | 298.15 | ||
33.791 | 300. | ||
44.857 | 400. | ||
54.271 | 500. | ||
61.93 | 600. | ||
68.14 | 700. | ||
73.26 | 800. | ||
77.51 | 900. | ||
81.09 | 1000. | ||
84.13 | 1100. | ||
86.69 | 1200. | ||
88.89 | 1300. | ||
90.77 | 1400. | ||
92.38 | 1500. |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔcH°liquid | -1204.87 | kcal/mol | Ccb | Roberts and Jessup, 1951 | Corresponding ΔfHºliquid = 16.83 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -1217.3 | kcal/mol | Ccb | Lemoult, 1911 | Corresponding ΔfHºliquid = 29.3 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -1195.1 | kcal/mol | Ccb | Auwsers, Roth, et al., 1910 | Corresponding ΔfHºliquid = 7.1 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 58.27 | cal/mol*K | N/A | Lebedev and Rabinovich, 1971 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
48.33 | 300. | Lebedev and Rabinovich, 1971 | T = 60 to 300 K.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 438. ± 4. | K | AVG | N/A | Average of 15 out of 16 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 249.05 | K | N/A | Anonymous, 1952 | Uncertainty assigned by TRC = 0.3 K; TRC |
Tfus | 247.22 | K | N/A | Anonymous, 1946 | Uncertainty assigned by TRC = 0.6 K; TRC |
Tfus | 249.94 | K | N/A | Stull, 1945 | Uncertainty assigned by TRC = 0.25 K; TRC |
Tfus | 244.83 | K | N/A | Anonymous, 1943 | Uncertainty assigned by TRC = 0.4 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 645. | K | N/A | Steele, Chirico, et al., 1997 | Uncertainty assigned by TRC = 6. K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 35.04 | atm | N/A | Steele, Chirico, et al., 1997 | Uncertainty assigned by TRC = 2.96 atm; derived from fit of obs. vapor pressure; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 2.44 | mol/l | N/A | Steele, Chirico, et al., 1997 | Uncertainty assigned by TRC = 0.13 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 11.7 ± 0.07 | kcal/mol | GS | Verevkin, 1999 | Based on data from 274. to 314. K.; AC |
ΔvapH° | 11.6 ± 0.1 | kcal/mol | EB | Steele, Chirico, et al., 1997, 2 | Based on data from 331. to 467. K.; AC |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
11.8 ± 0.07 | 294. | GS | Verevkin, 1999 | Based on data from 274. to 314. K.; AC |
11.0 ± 0.07 | 340. | EB | Steele, Chirico, et al., 1997, 2 | Based on data from 331. to 467. K.; AC |
10.3 ± 0.07 | 380. | EB | Steele, Chirico, et al., 1997, 2 | Based on data from 331. to 467. K.; AC |
9.70 ± 0.07 | 420. | EB | Steele, Chirico, et al., 1997, 2 | Based on data from 331. to 467. K.; AC |
9.0 ± 0.1 | 460. | EB | Steele, Chirico, et al., 1997, 2 | Based on data from 331. to 467. K.; AC |
10.6 | 358. | A | Stephenson and Malanowski, 1987 | Based on data from 343. to 493. K.; AC |
10.7 | 368. | A | Stephenson and Malanowski, 1987 | Based on data from 353. to 413. K.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
280.6 to 438.6 | 5.21396 | 2326.867 | 7.23 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
2.8499 | 250.78 | Lebedev and Rabinovich, 1971 | DH |
2.849 | 250.8 | Domalski and Hearing, 1996 | AC |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
11.36 | 250.78 | Lebedev and Rabinovich, 1971 | DH |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Guthrie, 1978
Guthrie, J.P.,
Equilibrium constants for a series of simple aldol condensations, and linear free energy relations with other carbonyl addition reactions,
Can. J. Chem., 1978, 56, 962-973. [all data]
Krall and Roberts, 1958
Krall, R.E.; Roberts, J.D.,
Strain variation in the unsaturated cyclobutane ring,
Am. Chem. Soc. Div. Pet. Chem., 1958, 3, 63-68. [all data]
Thermodynamics Research Center, 1997
Thermodynamics Research Center,
Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]
Roberts and Jessup, 1951
Roberts, D.E.; Jessup, R.S.,
Heat of polymerization of alpha-methylstyrene from heats of combustion of monomer and four polymer fractions,
J. Res. NBS, 1951, 46, 11-17. [all data]
Lemoult, 1911
Lemoult, M.P.,
Thermochimie. - Recherches sur les derives du styrolene; rectification de quelques erreurs experimentales,
Compt. Rend., 1911, 152, 1402-1404. [all data]
Auwsers, Roth, et al., 1910
Auwsers, K.; Roth, W.A.; Eisenlohr, F.,
III. Verbrennungswarmen von Terpenen und Styrolen,
Justus Liebigs Ann. Chem., 1910, 267-290. [all data]
Lebedev and Rabinovich, 1971
Lebedev, B.V.; Rabinovich, I.B.,
Heat capacities and thermodynamic functions of a-methylstyrene and poly(a-methylstyrene),
Tr. Khim. Khim. Tekhnol., 1971, 1, 12-15. [all data]
Anonymous, 1952
Anonymous, R.,
, Physical Properties of Chemical Substances, Dow Chemical Co., 1952. [all data]
Anonymous, 1946
Anonymous, R.,
, Am. Pet. Inst. Res. Proj. 45, Ohio State Univ., 1946. [all data]
Stull, 1945
Stull, D.R.,
Personal Commun., Dow Chemical Co., 1945. [all data]
Anonymous, 1943
Anonymous, R.,
, Sunbury Rep. No. 2176, Anglo-Iranian Oil Co., 1943. [all data]
Steele, Chirico, et al., 1997
Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.,
Vapor Pressure, Heat Capacity, and Density along the Saturated Line, Measurements for Dimethyl Isophthalate, Dimethyl Carbonate, 1,3,5-Trimethyl benzene, Pentafluorophenol, 4-tert-Butylcatechol, .alp,
J. Chem. Eng. Data, 1997, 42, 1008-20. [all data]
Verevkin, 1999
Verevkin, Sergey P.,
Thermochemical investigation on α-methyl-styrene and parent phenyl substituted alkenes,
Thermochimica Acta, 1999, 326, 1-2, 17-25, https://doi.org/10.1016/S0040-6031(98)00585-1
. [all data]
Steele, Chirico, et al., 1997, 2
Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.,
Vapor Pressure, Heat Capacity, and Density along the Saturation Line, Measurements for Dimethyl Isophthalate, Dimethyl Carbonate, 1,3,5-Triethylbenzene, Pentafluorophenol, 4- tert -Butylcatechol, α-Methylstyrene, and N , N '-Bis(2-hydroxyethyl)ethylenediamine,
J. Chem. Eng. Data, 1997, 42, 6, 1008-1020, https://doi.org/10.1021/je970102d
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid Pc Critical pressure S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point ΔcH°gas Enthalpy of combustion of gas at standard conditions ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.