Pentane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
MS - José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

1-Pentene + Hydrogen = Pentane

By formula: C5H10 + H2 = C5H12

Quantity Value Units Method Reference Comment
Δr-30.27 ± 0.58kcal/molChydMolnar, Rachford, et al., 1984liquid phase; solvent: Dioxane; ALS
Δr-29.87 ± 0.42kcal/molChydMolnar, Rachford, et al., 1984liquid phase; solvent: Hexane; ALS
Δr-29.30 ± 0.57kcal/molChydRogers and Skanupong, 1974liquid phase; solvent: Hexane; ALS
Δr-28.5 ± 0.3kcal/molChydRogers and McLafferty, 1971liquid phase; solvent: Hydrocarbon; ALS

C10H12CrO5 (solution) = Pentane (solution) + C5CrO5 (solution)

By formula: C10H12CrO5 (solution) = C5H12 (solution) + C5CrO5 (solution)

Quantity Value Units Method Reference Comment
Δr8.91kcal/molN/AMorse, Parker, et al., 1989solvent: Pentane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of Cr-CO bond in Cr(CO)6, 36.81 kcal/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction Cr(CO)6(solution) + n-C5H12(solution) = Cr(CO)5(n-C5H12)(solution) + CO(solution), 27.89 kcal/mol Morse, Parker, et al., 1989; MS

Pentane (solution) + Chromium hexacarbonyl (solution) = C10H12CrO5 (solution) + Carbon monoxide (solution)

By formula: C5H12 (solution) + C6CrO6 (solution) = C10H12CrO5 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr27.9 ± 2.5kcal/molPACMorse, Parker, et al., 1989solvent: Pentane; The reaction enthalpy relies on 0.67 for the quantum yield of CO dissociation; MS

3Hydrogen + 3-Penten-1-yne, (Z)- = Pentane

By formula: 3H2 + C5H6 = C5H12

Quantity Value Units Method Reference Comment
Δr-96.8 ± 0.1kcal/molChydRoth, Adamczak, et al., 1991liquid phase; ALS
Δr-95.6 ± 1.1kcal/molChydSkinner and Snelson, 1959liquid phase; solvent: Acetic acid; ALS

3Hydrogen + 3-Penten-1-yne, (E)- = Pentane

By formula: 3H2 + C5H6 = C5H12

Quantity Value Units Method Reference Comment
Δr-97.0 ± 0.3kcal/molChydRoth, Adamczak, et al., 1991liquid phase; ALS
Δr-96.0 ± 0.4kcal/molChydSkinner and Snelson, 1959liquid phase; solvent: Acetic acid; ALS

2Hydrogen + 1,4-Pentadiene = Pentane

By formula: 2H2 + C5H8 = C5H12

Quantity Value Units Method Reference Comment
Δr-60.22 ± 0.15kcal/molChydKistiakowsky, Ruhoff, et al., 1936gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -60.79 ± 0.15 kcal/mol; At 355 °K; ALS

Phenol (solution) + C5H11BrMg (solution) = C6H5BrMgO (solution) + Pentane (solution)

By formula: C6H6O (solution) + C5H11BrMg (solution) = C6H5BrMgO (solution) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Δr-48.4 ± 1.0kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

C5H11BrMg (solution) + Hydrogen bromide (g) = Pentane (solution) + Br2Mg (solution)

By formula: C5H11BrMg (solution) + HBr (g) = C5H12 (solution) + Br2Mg (solution)

Quantity Value Units Method Reference Comment
Δr-73.21 ± 0.53kcal/molRSCHolm, 1981solvent: Diethyl ether; MS

Ethanol (solution) + C5H11BrMg (solution) = C2H5BrMgO (solution) + Pentane (solution)

By formula: C2H6O (solution) + C5H11BrMg (solution) = C2H5BrMgO (solution) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Δr-47.7 ± 1.0kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

C5H11BrMg (solution) + Methylamine (solution) = CH4BrMgN (solution) + Pentane (solution)

By formula: C5H11BrMg (solution) + CH5N (solution) = CH4BrMgN (solution) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Δr-31.19 ± 0.60kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

2Hydrogen + Cyclopropane,ethenyl- = Pentane

By formula: 2H2 + C5H8 = C5H12

Quantity Value Units Method Reference Comment
Δr-65.5 ± 0.2kcal/molChydRoth, Kirmse, et al., 1982liquid phase; solvent: Isooctane; ALS

C5O5W (g) + Pentane (g) = C10H12O5W (g)

By formula: C5O5W (g) + C5H12 (g) = C10H12O5W (g)

Quantity Value Units Method Reference Comment
Δr-10.6 ± 3.0kcal/molEqGBrown, Ishikawa, et al., 1990Temperature range: ca. 300-350 K; MS

C5H11BrMg (solution) + Methane (solution) = Pentane (solution) + CH3BrMg (solution)

By formula: C5H11BrMg (solution) + CH4 (solution) = C5H12 (solution) + CH3BrMg (solution)

Quantity Value Units Method Reference Comment
Δr-3.6 ± 1.0kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

Propanedinitrile (solution) + C5H11BrMg (solution) = C3HBrMgN2 (solution) + Pentane (solution)

By formula: C3H2N2 (solution) + C5H11BrMg (solution) = C3HBrMgN2 (solution) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Δr-48.59kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

Diphenylamine (solution) + C5H11BrMg (solution) = C12H10BrMgN (solution) + Pentane (solution)

By formula: C12H11N (solution) + C5H11BrMg (solution) = C12H10BrMgN (solution) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Δr-28.39kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

C5H11BrMg (solution) + Trifluoroacetic acid (solution) = C2BrF3MgO2 (solution) + Pentane (solution)

By formula: C5H11BrMg (solution) + C2HF3O2 (solution) = C2BrF3MgO2 (solution) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Δr-65.39kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

C5H11BrMg (solution) + Phenol, pentafluoro- (solution) = C6BrF5MgO (cr) + Pentane (solution)

By formula: C5H11BrMg (solution) + C6HF5O (solution) = C6BrF5MgO (cr) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Δr-55.90kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

C5H11BrMg (solution) + Ethanol, 2,2,2-trifluoro- (solution) = C2H2BrF3MgO (solution) + Pentane (solution)

By formula: C5H11BrMg (solution) + C2H3F3O (solution) = C2H2BrF3MgO (solution) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Δr-47.71kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

Methyl Alcohol (solution) + C5H11BrMg (solution) = CH3BrMgO (cr) + Pentane (solution)

By formula: CH4O (solution) + C5H11BrMg (solution) = CH3BrMgO (cr) + C5H12 (solution)

Quantity Value Units Method Reference Comment
Δr-52.51kcal/molRSCHolm, 1983solvent: Diethyl ether; MS

2Hydrogen + 1,3-Pentadiene = Pentane

By formula: 2H2 + C5H8 = C5H12

Quantity Value Units Method Reference Comment
Δr-54.11 ± 0.15kcal/molChydDolliver, Gresham, et al., 1937gas phase; At 355 °K; ALS

Pentane = Butane, 2-methyl-

By formula: C5H12 = C5H12

Quantity Value Units Method Reference Comment
Δr-1.861kcal/molEqkPines, Kvetinskas, et al., 1945gas phase; Heat of isomerization; ALS

Hydrogen + 2-Pentene, (Z)- = Pentane

By formula: H2 + C5H10 = C5H12

Quantity Value Units Method Reference Comment
Δr-28.1 ± 0.2kcal/molChydEgger and Benson, 1966gas phase; ALS

Hydrogen + 2-Pentene, (E)- = Pentane

By formula: H2 + C5H10 = C5H12

Quantity Value Units Method Reference Comment
Δr-27.2 ± 0.2kcal/molChydEgger and Benson, 1966gas phase; ALS

Mass spectrum (electron ionization)

Go To: Top, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center, 1998.
NIST MS number 291244

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Reaction thermochemistry data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Molnar, Rachford, et al., 1984
Molnar, A.; Rachford, R.; Smith, G.V.; Liu, R., Heats of hydrogenation by a simple and rapid flow calorimetric method, Appl. Catal., 1984, 9, 219-223. [all data]

Rogers and Skanupong, 1974
Rogers, D.W.; Skanupong, S., Heats of hydrogenation of sixteen terminal monoolefins. The alternating effect, J. Phys. Chem., 1974, 78, 2569-2572. [all data]

Rogers and McLafferty, 1971
Rogers, D.W.; McLafferty, F.J., A new hydrogen calorimeter. Heats of hydrogenation of allyl and vinyl unsaturation adjacent to a ring, Tetrahedron, 1971, 27, 3765-3775. [all data]

Morse, Parker, et al., 1989
Morse, J.M., Jr.; Parker, G.H.; Burkey, T.J., Organometallics, 1989, 8, 2471. [all data]

Lewis, Golden, et al., 1984
Lewis, K.E.; Golden, D.M.; Smith, G.P., Organometallic bond dissociation energies: Laser pyrolysis of Fe(CO)5, Cr(CO)6, Mo(CO)6, and W(CO)6, J. Am. Chem. Soc., 1984, 106, 3905. [all data]

Roth, Adamczak, et al., 1991
Roth, W.R.; Adamczak, O.; Breuckmann, R.; Lennartz, H.-W.; Boese, R., Die Berechnung von Resonanzenergien; das MM2ERW-Kraftfeld, Chem. Ber., 1991, 124, 2499-2521. [all data]

Skinner and Snelson, 1959
Skinner, H.A.; Snelson, A., Heats of hydrogenation Part 3., Trans. Faraday Soc., 1959, 55, 405-407. [all data]

Kistiakowsky, Ruhoff, et al., 1936
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. IV. Hydrogenation of some dienes and of benzene, J. Am. Chem. Soc., 1936, 58, 146-153. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Holm, 1983
Holm, T., Acta Chem. Scand. B, 1983, 37, 797. [all data]

Holm, 1981
Holm, T., J. Chem. Soc., Perkin Trans. II, 1981, 464.. [all data]

Roth, Kirmse, et al., 1982
Roth, W.R.; Kirmse, W.; Hoffmann, W.; Lennartz, H.W., Heats of hydrogenation. III. Effect of fluoro substituents on the thermal rearrangement of cyclopropane systems, Chem. Ber., 1982, 115, 2508-2515. [all data]

Brown, Ishikawa, et al., 1990
Brown, C.E.; Ishikawa, Y.; Hackett, P.A.; Rayner, D.M., J. Am. Chem. Soc., 1990, 112, 2530. [all data]

Dolliver, Gresham, et al., 1937
Dolliver, M.a.; Gresham, T.L.; Kistiakowsky, G.B.; Vaughan, W.E., Heats of organic reactions. V. Heats of hydrogenation of various hydrocarbons, J. Am. Chem. Soc., 1937, 59, 831-841. [all data]

Pines, Kvetinskas, et al., 1945
Pines, H.; Kvetinskas, B.; Kassel, L.S.; Ipatieff, V.N., Determination of equilibrium constants for butanes and pentanes, J. Am. Chem. Soc., 1945, 67, 631-637. [all data]

Egger and Benson, 1966
Egger, K.W.; Benson, S.W., Nitric oxide and iodine catalyzed isomerization of olefins. VI. Thermodynamic data from equilibrium studies of the geometrical and positional isomerization of n-pentenes, J. Am. Chem. Soc., 1966, 88, 236-240. [all data]


Notes

Go To: Top, Reaction thermochemistry data, Mass spectrum (electron ionization), References