Spiropentane
- Formula: C5H8
- Molecular weight: 68.1170
- IUPAC Standard InChIKey: OGNAOIGAPPSUMG-UHFFFAOYSA-N
- CAS Registry Number: 157-40-4
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Spiro[2.2]pentane
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
S°liquid | 46.291 | cal/mol*K | N/A | Scott, Finke, et al., 1950 |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
32.151 | 298.15 | Scott, Finke, et al., 1950 | T = 12 to 312 K. |
Phase change data
Go To: Top, Condensed phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 312.1 | K | N/A | Majer and Svoboda, 1985 | |
Tboil | 303.18 | K | N/A | Cleaves and Sherrick, 1946 | Uncertainty assigned by TRC = 0.1 K; same as in 1946 sla 1; TRC |
Tboil | 312.18 | K | N/A | Slabey, 1946 | Uncertainty assigned by TRC = 0.1 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 166.10 | K | N/A | Cleaves and Sherrick, 1946 | Uncertainty assigned by TRC = 0.1 K; same as in 1946 sla 1; TRC |
Tfus | 166.10 | K | N/A | Slabey, 1946 | Uncertainty assigned by TRC = 0.1 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 166.14 | K | N/A | Scott, Finke, et al., 1950, 2 | Uncertainty assigned by TRC = 0.05 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 506.4 | K | N/A | Majer and Svoboda, 1985 | |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 6.62 | kcal/mol | N/A | Majer and Svoboda, 1985 | |
ΔvapH° | 6.57 ± 0.02 | kcal/mol | C | Scott, Finke, et al., 1950 | AC |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
6.396 | 312.1 | N/A | Majer and Svoboda, 1985 | |
6.3929 | 312.13 | N/A | Scott, Finke, et al., 1950 | P = 101.325 kPa; DH |
6.84 | 291. | A | Stephenson and Malanowski, 1987 | Based on data from 276. to 344. K. See also Scott, Finke, et al., 1950, 3.; AC |
6.76 ± 0.02 | 283. | C | Scott, Finke, et al., 1950 | AC |
6.38 ± 0.02 | 312. | C | Scott, Finke, et al., 1950 | AC |
Enthalpy of vaporization
ΔvapH =
A exp(-βTr) (1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kcal/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A (kcal/mol) | β | Tc (K) | Reference | Comment |
---|---|---|---|---|---|
283. to 312. | 9.904 | 0.2778 | 506.4 | Majer and Svoboda, 1985 |
Entropy of vaporization
ΔvapS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
20.48 | 312.13 | Scott, Finke, et al., 1950 | P; DH |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
276.78 to 343.98 | 4.03563 | 1089.801 | -42.079 | Scott, Finke, et al., 1950 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
1.5376 | 166.14 | Scott, Finke, et al., 1950 | DH |
1.54 | 166.1 | Domalski and Hearing, 1996 | AC |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
9.254 | 166.14 | Scott, Finke, et al., 1950 | DH |
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Scott, Finke, et al., 1950
Scott, D.W.; Finke, H.L.; Hubbard, W.N.; McCullough, J.P.; Gross, M.E.; Williamson, K.D.; Waddington, G.; Huffman, H.M.,
Spiropentane: heat capacity, heats of fusion and vaporization, vapor pressure, entropy and thermodynamic functions,
J. Am. Chem. Soc., 1950, 72, 4664-4668. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Cleaves and Sherrick, 1946
Cleaves, A.P.; Sherrick, M.E.,
, Natl. Advis. Comm. Aeronaut., 1946. [all data]
Slabey, 1946
Slabey, V.A.,
, Natl. Advis. Comm. Aeronaut., 1946. [all data]
Scott, Finke, et al., 1950, 2
Scott, D.W.; Finke, H.L.; Hubbard, W.N.; McCullough, J.P.; Gross, M.E.; Williamson, K.D.; Waddington, G.; Huffman, H.M.,
Spiropentane: Heat Capacity, Heats of Fusion and Vaporization, Vapor Pressure, Entropy and Thermodynamic Functions,
J. Am. Chem. Soc. 72, 1950, 4664 1950. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Scott, Finke, et al., 1950, 3
Scott, D.W.; Finke, H.L.; Gross, M.E.; Guthrie, G.B.; Huffman, H.M.,
2,3-Dithiabutane: low temperature heat capacity, heat of fusion, heat of vaporization, vapor pressure, entropy and thermodynamic functions,
J. Am. Chem. Soc., 1950, 72, 2424-2430. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ΔvapS Entropy of vaporization - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.