Cyclopentene
- Formula: C5H8
- Molecular weight: 68.1170
- IUPAC Standard InChIKey: LPIQUOYDBNQMRZ-UHFFFAOYSA-N
- CAS Registry Number: 142-29-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | 1.02 ± 0.15 | kcal/mol | Ccb | Labbauf and Rossini, 1961 | ALS |
ΔfH°liquid | 1.16 ± 0.16 | kcal/mol | Ccb | Epstein, Pitzer, et al., 1949 | Unpubished results; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -744.55 ± 0.14 | kcal/mol | Ccb | Labbauf and Rossini, 1961 | Corresponding ΔfHºliquid = 1.03 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 48.100 | cal/mol*K | N/A | Huffman, Eaton, et al., 1948 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
29.250 | 298.15 | Huffman, Eaton, et al., 1948 | T = 12 to 300 K.; DH |
Phase change data
Go To: Top, Condensed phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 317. ± 2. | K | AVG | N/A | Average of 28 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 138. ± 1. | K | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 138.13 | K | N/A | Huffman, Eaton, et al., 1948, 2 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.05 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 506.5 ± 0.5 | K | N/A | Tsonopoulos and Ambrose, 1996 | |
Tc | 507.6 | K | N/A | Teja and Anselme, 1990 | Uncertainty assigned by TRC = 0.4 K; TRC |
Tc | 507.0 | K | N/A | Teja and Rosenthal, 1990 | Uncertainty assigned by TRC = 0.6 K; TRC |
Tc | 506.1 | K | N/A | Ambrose and Grant, 1957 | Uncertainty assigned by TRC = 0.15 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 47.4 ± 0.5 | atm | N/A | Tsonopoulos and Ambrose, 1996 | |
Pc | 47.39 | atm | N/A | Teja and Rosenthal, 1990 | Uncertainty assigned by TRC = 0.30 atm; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.245 | l/mol | N/A | Tsonopoulos and Ambrose, 1996 | |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 4.08 ± 0.05 | mol/l | N/A | Tsonopoulos and Ambrose, 1996 | |
ρc | 4.08 | mol/l | N/A | Teja and Anselme, 1990 | Uncertainty assigned by TRC = 0.09 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 6.780 | kcal/mol | V | Lister, 1941 | Halogenation at 27 C; ALS |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
7.15 | 264. | A | Stephenson and Malanowski, 1987 | Based on data from 249. to 318. K.; AC |
5.93 | 299. | MM | Forziati, Camin, et al., 1950 | Based on data from 289. to 318. K.; AC |
6.79 | 300. | N/A | Lister, 1941 | Based on data from 230. to 293. K.; AC |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
0.803 | 138.1 | Domalski and Hearing, 1996 | AC |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
1.32 | 87.07 | Domalski and Hearing, 1996 | CAL |
5.813 | 138.1 |
Enthalpy of phase transition
ΔHtrs (kcal/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
0.1146 | 87.07 | crystaline, II | crystaline, I | Huffman, Eaton, et al., 1948 | DH |
0.80387 | 138.13 | crystaline, I | liquid | Huffman, Eaton, et al., 1948 | DH |
Entropy of phase transition
ΔStrs (cal/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
2.27 | 87.07 | crystaline, II | crystaline, I | Huffman, Eaton, et al., 1948 | DH |
5.820 | 138.13 | crystaline, I | liquid | Huffman, Eaton, et al., 1948 | DH |
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Labbauf and Rossini, 1961
Labbauf, A.; Rossini, F.D.,
Heats of combustion, formation, and hydrogenation of 14 selected cyclomonoolefin hydrocarbons,
J. Phys. Chem., 1961, 65, 476-480. [all data]
Epstein, Pitzer, et al., 1949
Epstein, M.B.; Pitzer, K.S.; Rossini, F.D.,
Heats, equilibrium constants, and free energies of formation of cyclopentene and cyclohexene,
J. Res. NBS, 1949, 42, 379-382. [all data]
Huffman, Eaton, et al., 1948
Huffman, H.M.; Eaton, M.; Oliver, G.D.,
The heat capacities, heats of transition, heats of fusion and entropies of cyclopentene and cyclohexene,
J. Am. Chem. Soc., 1948, 70, 2911-2914. [all data]
Huffman, Eaton, et al., 1948, 2
Huffman, H.M.; Eaton, M.; Oliver, G.D.,
The heat capacities, heats of transition, heats of fusion and entropies of cyclopentene and cyclohexene,
J. Am. Chem. Soc., 1948, 70, 2911. [all data]
Tsonopoulos and Ambrose, 1996
Tsonopoulos, C.; Ambrose, D.,
Vapor-Liquid Critical Properties of Elements and Compounds. 6. Unsaturated Aliphatic Hydrocarbons,
J. Chem. Eng. Data, 1996, 41, 645-656. [all data]
Teja and Anselme, 1990
Teja, A.S.; Anselme, M.J.,
The critical properties of thermally stable and unstable fluids. II. 1986 results,
AIChE Symp. Ser., 1990, 86, 279, 122-7. [all data]
Teja and Rosenthal, 1990
Teja, A.S.; Rosenthal, D.J.,
The Critical Pressures and Temperatures of Twelve Substances Using A Low Residence Time Flow Apparatus,
AIChE Symp. Ser., 1990, 86, 279, 133-7. [all data]
Ambrose and Grant, 1957
Ambrose, D.; Grant, D.G.,
The Critical Temperatures of Some Hydrocarbons and Pyridine Bases,
Trans. Faraday Soc., 1957, 53, 771. [all data]
Lister, 1941
Lister, M.W.,
Heats of organic reactions. X. Heats of bromination of cyclic olefins,
J. Am. Chem. Soc., 1941, 63, 143-149. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Forziati, Camin, et al., 1950
Forziati, A.F.; Camin, D.L.; Rossini, F.D.,
Density, refractive index, boiling point, and vapor pressure of eight monoolefin (1-alkene), six pentadiene, and two cyclomonoolefin hydrocarbons,
J. RES. NATL. BUR. STAN., 1950, 45, 5, 406, https://doi.org/10.6028/jres.045.044
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid Pc Critical pressure S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.