1,2-Butadiene, 3-methyl-
- Formula: C5H8
- Molecular weight: 68.1170
- IUPAC Standard InChIKey: PAKGDPSCXSUALC-UHFFFAOYSA-N
- CAS Registry Number: 598-25-4
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: 1,1-Dimethylallene; 1,1-Dimethylallylene; 2-Methyl-2,3-butadiene; 3-Methyl-1,2-butadiene; 3,3-Dimethylallene; CH2=C=C(CH3)2; 3-methylbuta-1,2-diene
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | 101.2 ± 0.50 | kJ/mol | Ccb | Good, 1969 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -3212.1 ± 0.42 | kJ/mol | Ccb | Good, 1969 | Corresponding ΔfHºliquid = 101.2 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 231.79 | J/mol*K | N/A | Messerly, Todd, et al., 1970 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
152.42 | 298.15 | Messerly, Todd, et al., 1970 | T = 12 to 320 K.; DH |
151.1 | 298.15 | Good, 1969 | DH |
Phase change data
Go To: Top, Condensed phase thermochemistry data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 312. ± 3. | K | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 159.510 | K | N/A | Streiff, Schultz, et al., 1957 | Uncertainty assigned by TRC = 0.03 K; TRC |
Tfus | 159.510 | K | N/A | Streiff, Schultz, et al., 1957 | Uncertainty assigned by TRC = 0.02 K; TRC |
Tfus | 159.520 | K | N/A | Streiff, Schultz, et al., 1957 | Uncertainty assigned by TRC = 0.01 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 159.53 | K | N/A | Messerly, Todd, et al., 1970, 2 | Uncertainty assigned by TRC = 0.05 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 27.90 ± 0.28 | kJ/mol | V | Steele, Chirico, et al., 1990 | ALS |
ΔvapH° | 28. | kJ/mol | N/A | Reid, 1972 | AC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
31. | 240. | A | Stephenson and Malanowski, 1987 | Based on data from 227. to 253. K.; AC |
29.9 | 267. | A | Stephenson and Malanowski, 1987 | Based on data from 252. to 323. K.; AC |
31.6 | 230. | IP | Osborn and Douslin, 1969 | Based on data from 213. to 242. K.; AC |
29. | 291. | EB | Osborn and Douslin, 1969 | Based on data from 274. to 319. K.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
213.14 to 242.22 | 4.41572 | 1249.41 | -29.226 | Osborn and Douslin, 1969 | Coefficents calculated by NIST from author's data. |
273.73 to 319.19 | 4.07332 | 1106.62 | -41.93 | Osborn and Douslin, 1969 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
7.9563 | 159.53 | Messerly, Todd, et al., 1970 | DH |
7.95 | 159.5 | Domalski and Hearing, 1996 | AC |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
49.873 | 159.53 | Messerly, Todd, et al., 1970 | DH |
IR Spectrum
Go To: Top, Condensed phase thermochemistry data, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Gas Phase Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Owner | NIST Standard Reference Data Program Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center |
State | gas |
Instrument | HP-GC/MS/IRD |
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Good, 1969
Good, W.D.,
3-Methyl-1,2-butadiene: Enthalpies of combustion and formation,
J. Chem. Eng. Data, 1969, 14, 480-481. [all data]
Messerly, Todd, et al., 1970
Messerly, J.F.; Todd, S.S.; Guthrie, G.B.,
Chemical thermodynamic properties of the pentadienes,
J. Chem. Eng. Data, 1970, 15, 227-232. [all data]
Streiff, Schultz, et al., 1957
Streiff, A.J.; Schultz, L.H.; Hulme, A.R.; Tucker, J.A.; Krouskop, N.C.; Rossini, F.D.,
Purification, Purity, and Freezing Points of 20 API Standard API Research Hydrocarbons,
Anal. Chem., 1957, 29, 361. [all data]
Messerly, Todd, et al., 1970, 2
Messerly, J.F.; Todd, S.S.; Guthrie, G.B.,
Chemical thermodynamic properties of the pentadienes. Third law studies.,
J. Chem. Eng. Data, 1970, 15, 227-32. [all data]
Steele, Chirico, et al., 1990
Steele, W.V.; Chirico, R.D.; Nguyen, A.; Hossenlopp, I.A.; Smith, N.K.,
Determination of ideal-gas enthalpies of formation for key compounds,
Am. Inst. Chem. Eng. Symp. Ser. (AIChE Symp. Ser.), 1990, 138-154. [all data]
Reid, 1972
Reid, Robert C.,
Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00,
AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Osborn and Douslin, 1969
Osborn, Ann G.; Douslin, Donald R.,
Vapor pressure relations for the seven pentadienes,
J. Chem. Eng. Data, 1969, 14, 2, 208-209, https://doi.org/10.1021/je60041a010
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tfus Fusion (melting) point Ttriple Triple point temperature ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.