Ethane
- Formula: C2H6
- Molecular weight: 30.0690
- IUPAC Standard InChIKey: OTMSDBZUPAUEDD-UHFFFAOYSA-N
- CAS Registry Number: 74-84-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Species with the same structure:
- Isotopologues:
- Other names: Bimethyl; Dimethyl; Ethyl hydride; Methylmethane; C2H6; UN 1035; UN 1961
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Phase change data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DH - Eugene S. Domalski and Elizabeth D. Hearing
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 184.6 ± 0.6 | K | AVG | N/A | Average of 23 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 101. | K | N/A | Streng, 1971 | Uncertainty assigned by TRC = 1. K; TRC |
Tfus | 89.2 | K | N/A | Timmermans, 1935 | Uncertainty assigned by TRC = 1.5 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 91. ± 6. | K | AVG | N/A | Average of 10 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ptriple | 0.000011 | atm | N/A | Younglove and Ely, 1987 | Uncertainty assigned by TRC = 5.×10-9 atm; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 305.3 ± 0.3 | K | AVG | N/A | Average of 41 out of 46 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 49. ± 1. | atm | AVG | N/A | Average of 28 out of 29 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.147 ± 0.002 | l/mol | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 6.9 ± 0.4 | mol/l | AVG | N/A | Average of 19 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 2.33 | kcal/mol | N/A | Majer and Svoboda, 1985 |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
3.5141 | 184.1 | N/A | Witt and Kemp, 1937 | DH |
3.66 | 288. | A | Stephenson and Malanowski, 1987 | Based on data from 273. to 305. K.; AC |
3.75 | 170. | A | Stephenson and Malanowski, 1987 | Based on data from 154. to 185. K.; AC |
4.23 | 114. | A | Stephenson and Malanowski, 1987 | Based on data from 95. to 129. K.; AC |
3.56 | 214. | A | Stephenson and Malanowski, 1987 | Based on data from 185. to 229. K.; AC |
3.56 | 259. | A | Stephenson and Malanowski, 1987 | Based on data from 228. to 274. K.; AC |
4.09 | 129. | N/A | Carruth and Kobayashi, 1973 | Based on data from 91. to 144. K.; AC |
3.51 | 210. | N/A | Reid, 1972 | AC |
3.51 | 184. | N/A | Witt and Kemp, 1937 | AC |
3.66 | 185. | N/A | Loomis and Walters, 1926 | Based on data from 136. to 200. K.; AC |
Enthalpy of vaporization
ΔvapH =
A exp(-βTr) (1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kcal/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A (kcal/mol) | β | Tc (K) | Reference |
---|---|---|---|---|
289. to 301. | 7.034 | 0.3696 | 305.4 | Majer and Svoboda, 1985 |
Entropy of vaporization
ΔvapS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
19.09 | 184.1 | Witt and Kemp, 1937 | DH |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
91.33 to 144.13 | 4.50135 | 791.3 | -6.422 | Carruth and Kobayashi, 1973 | Coefficents calculated by NIST from author's data. |
135.74 to 199.91 | 3.93264 | 659.739 | -16.719 | Loomis and Walters, 1926 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
5.40 | 85. | N/A | Regnier, 1972 | Based on data from 80. to 90. K.; AC |
4.90 | 90. | B | Bondi, 1963 | AC |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
0.139 | 90.341 | Atake and Chihara, 1976 | Triple point.; DH |
0.667 | 89.5 | Domalski and Hearing, 1996 | AC |
0.14 | 90.3 | Atake and Chihara, 1976 | AC |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
1.54 | 90.341 | Atake and Chihara, 1976 | Triple; DH |
Enthalpy of phase transition
ΔHtrs (kcal/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
0.5454 | 89.813 | crystaline, II | crystaline, I | Atake and Chihara, 1976 | DH |
0.6828 | 89.87 | crystaline, I | liquid | Witt and Kemp, 1937 | DH |
0.6675 | 89.50 | crystaline, I | liquid | Wiebe, Hubbard, et al., 1930 | DH |
0.58258 | 89.77 | crystaline, II | crystaline, I | Roder, 1976 | DH |
Entropy of phase transition
ΔStrs (cal/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
6.090 | 89.813 | crystaline, II | crystaline, I | Atake and Chihara, 1976 | DH |
7.60 | 89.87 | crystaline, I | liquid | Witt and Kemp, 1937 | DH |
7.46 | 89.50 | crystaline, I | liquid | Wiebe, Hubbard, et al., 1930 | DH |
6.489 | 89.77 | crystaline, II | crystaline, I | Roder, 1976 | DH |
References
Go To: Top, Phase change data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Streng, 1971
Streng, A.G.,
Miscibility and Compatibility of Some Liquid and Solidified Gases at Low Temperature,
J. Chem. Eng. Data, 1971, 16, 357. [all data]
Timmermans, 1935
Timmermans, J.,
Researches in Stoichiometry. I. The Heat of Fusion of Organic Compounds.,
Bull. Soc. Chim. Belg., 1935, 44, 17-40. [all data]
Younglove and Ely, 1987
Younglove, B.A.; Ely, J.F.,
Thermophysical Properties of Fluids II. Methane, Ethane, Propane, Isobutane, and Normal Butane,
J. Phys. Chem. Ref. Data, 1987, 16, 577. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Witt and Kemp, 1937
Witt, R.K.; Kemp, J.D.,
The heat capacity of ethane from 15°K to the boiling point. The heat of fusion and the heat of vaporization,
J. Am. Chem. Soc., 1937, 59, 273-276. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Carruth and Kobayashi, 1973
Carruth, Grant F.; Kobayashi, Riki,
Vapor pressure of normal paraffins ethane through n-decane from their triple points to about 10 mm mercury,
J. Chem. Eng. Data, 1973, 18, 2, 115-126, https://doi.org/10.1021/je60057a009
. [all data]
Reid, 1972
Reid, Robert C.,
Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00,
AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637
. [all data]
Loomis and Walters, 1926
Loomis, A.G.; Walters, J.E.,
THE VAPOR PRESSURE OF ETHANE NEAR THE NORMAL BOILING POINT 1,
J. Am. Chem. Soc., 1926, 48, 8, 2051-2055, https://doi.org/10.1021/ja01419a006
. [all data]
Regnier, 1972
Regnier, J.,
J. Chim. Phys. Phys.-Chim. Biol., 1972, 69, 6, 942. [all data]
Bondi, 1963
Bondi, A.,
Heat of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments.,
J. Chem. Eng. Data, 1963, 8, 3, 371-381, https://doi.org/10.1021/je60018a027
. [all data]
Atake and Chihara, 1976
Atake, T.; Chihara, H.,
Calorimetric study of the phase changes in solid ethane,
Chem. Lett., 1976, (7), 683-688. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Wiebe, Hubbard, et al., 1930
Wiebe, R.; Hubbard, K.H.; Brevoort, M.J.,
The heat capacity of saturated liquid ethane from the boiling point to the critical temperature and heat fusion of the solid,
J. Am. Chem. Soc., 1930, 52, 611-622. [all data]
Roder, 1976
Roder, H.M.,
The heats of transition of solid ethane,
J. Chem. Phys., 1976, 65, 1371-1373. [all data]
Notes
Go To: Top, Phase change data, References
- Symbols used in this document:
Pc Critical pressure Ptriple Triple point pressure Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔsubH Enthalpy of sublimation ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ΔvapS Entropy of vaporization ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.