Nitrogen cation


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Ion clustering data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
gas,1 bar197.65J/mol*KReviewChase, 1998Data last reviewed in September, 1977

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Ion clustering data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Nitrogen cation + Nitrogen = (Nitrogen cation • Nitrogen)

By formula: N2+ + N2 = (N2+ • N2)

Quantity Value Units Method Reference Comment
Δr102. to 102.kJ/molRNGN/ARange of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr87.9J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase
Δr67.8J/mol*KPHPMSTeng and Conway, 1973gas phase
Δr81.6J/mol*KPHPMSPayzant and Kebarle, 1970gas phase
Δr46.J/mol*KDTVarney, 1968gas phase; Entropy change is questionable
Δr-4.J/mol*KDTVarney, 1959gas phase; Entropy change is questionable

Nitrogen cation + Argon = (Nitrogen cation • Argon)

By formula: N2+ + Ar = (N2+ • Ar)

Quantity Value Units Method Reference Comment
Δr112.kJ/molPD/KERDKim and Bowers, 1990gas phase; switching reaction(N2+)N2; Hiraoka and Nakajima, 1988
Δr106.kJ/molPHPMSTeng and Conway, 1973gas phase; switching reaction(N2+)N2
Quantity Value Units Method Reference Comment
Δr81.6J/mol*KPD/KERDKim and Bowers, 1990gas phase; switching reaction(N2+)N2; Hiraoka and Nakajima, 1988
Δr57.3J/mol*KPHPMSTeng and Conway, 1973gas phase; switching reaction(N2+)N2

(Nitrogen cation • 7Argon) + Argon = (Nitrogen cation • 8Argon)

By formula: (N2+ • 7Ar) + Ar = (N2+ • 8Ar)

Quantity Value Units Method Reference Comment
Δr6.40kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr71.J/mol*KN/AHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated

(Nitrogen cation • 8Argon) + Argon = (Nitrogen cation • 9Argon)

By formula: (N2+ • 8Ar) + Ar = (N2+ • 9Ar)

Quantity Value Units Method Reference Comment
Δr6.36kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr71.J/mol*KN/AHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated

(Nitrogen cation • Nitrogen) + Nitrogen = (Nitrogen cation • 2Nitrogen)

By formula: (N2+ • N2) + N2 = (N2+ • 2N2)

Quantity Value Units Method Reference Comment
Δr11.5 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Δr5.9kJ/molPILinn, Ono, et al., 1981gas phase
Quantity Value Units Method Reference Comment
Δr62.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Nitrogen cation • Argon) + Argon = (Nitrogen cation • 2Argon)

By formula: (N2+ • Ar) + Ar = (N2+ • 2Ar)

Quantity Value Units Method Reference Comment
Δr16.kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase; ΔrH>
Quantity Value Units Method Reference Comment
Δr71.J/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase; ΔrH>

(Nitrogen cation • 10Nitrogen) + Nitrogen = (Nitrogen cation • 11Nitrogen)

By formula: (N2+ • 10N2) + N2 = (N2+ • 11N2)

Quantity Value Units Method Reference Comment
Δr6.9 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr84.5J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Nitrogen cation • 9Nitrogen) + Nitrogen = (Nitrogen cation • 10Nitrogen)

By formula: (N2+ • 9N2) + N2 = (N2+ • 10N2)

Quantity Value Units Method Reference Comment
Δr7.4 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr86.6J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Nitrogen cation • 2Nitrogen) + Nitrogen = (Nitrogen cation • 3Nitrogen)

By formula: (N2+ • 2N2) + N2 = (N2+ • 3N2)

Quantity Value Units Method Reference Comment
Δr11.3 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr66.1J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Nitrogen cation • 3Nitrogen) + Nitrogen = (Nitrogen cation • 4Nitrogen)

By formula: (N2+ • 3N2) + N2 = (N2+ • 4N2)

Quantity Value Units Method Reference Comment
Δr10.5 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr69.5J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Nitrogen cation • 4Nitrogen) + Nitrogen = (Nitrogen cation • 5Nitrogen)

By formula: (N2+ • 4N2) + N2 = (N2+ • 5N2)

Quantity Value Units Method Reference Comment
Δr10.3 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr85.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Nitrogen cation • 5Nitrogen) + Nitrogen = (Nitrogen cation • 6Nitrogen)

By formula: (N2+ • 5N2) + N2 = (N2+ • 6N2)

Quantity Value Units Method Reference Comment
Δr9.5 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr90.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Nitrogen cation • 6Nitrogen) + Nitrogen = (Nitrogen cation • 7Nitrogen)

By formula: (N2+ • 6N2) + N2 = (N2+ • 7N2)

Quantity Value Units Method Reference Comment
Δr8.5 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr85.4J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Nitrogen cation • 7Nitrogen) + Nitrogen = (Nitrogen cation • 8Nitrogen)

By formula: (N2+ • 7N2) + N2 = (N2+ • 8N2)

Quantity Value Units Method Reference Comment
Δr7.8 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr80.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Nitrogen cation • 8Nitrogen) + Nitrogen = (Nitrogen cation • 9Nitrogen)

By formula: (N2+ • 8N2) + N2 = (N2+ • 9N2)

Quantity Value Units Method Reference Comment
Δr7.4 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr81.6J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Nitrogen cation • 2Argon) + Argon = (Nitrogen cation • 3Argon)

By formula: (N2+ • 2Ar) + Ar = (N2+ • 3Ar)

Quantity Value Units Method Reference Comment
Δr7.3 ± 0.8kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr57.3J/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase

(Nitrogen cation • 3Argon) + Argon = (Nitrogen cation • 4Argon)

By formula: (N2+ • 3Ar) + Ar = (N2+ • 4Ar)

Quantity Value Units Method Reference Comment
Δr7.0 ± 0.8kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase

(Nitrogen cation • 4Argon) + Argon = (Nitrogen cation • 5Argon)

By formula: (N2+ • 4Ar) + Ar = (N2+ • 5Ar)

Quantity Value Units Method Reference Comment
Δr6.6 ± 0.8kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr71.1J/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase

(Nitrogen cation • 5Argon) + Argon = (Nitrogen cation • 6Argon)

By formula: (N2+ • 5Ar) + Ar = (N2+ • 6Ar)

Quantity Value Units Method Reference Comment
Δr6.5 ± 0.8kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr72.8J/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase

(Nitrogen cation • 6Argon) + Argon = (Nitrogen cation • 7Argon)

By formula: (N2+ • 6Ar) + Ar = (N2+ • 7Ar)

Quantity Value Units Method Reference Comment
Δr6.4 ± 0.8kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr72.4J/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase

Nitrogen cation + helium = (Nitrogen cation • helium)

By formula: N2+ + He = (N2+ • He)

Quantity Value Units Method Reference Comment
Δr2.kJ/molPDissBieske, Soliva, et al., 1990gas phase; same ΔrH for N2+(B) and (N2+)X; ab initio, Miller, Tennyson, et al., 1988

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Nitrogen cation + Argon = (Nitrogen cation • Argon)

By formula: N2+ + Ar = (N2+ • Ar)

Quantity Value Units Method Reference Comment
Δr112.kJ/molPD/KERDKim and Bowers, 1990gas phase; switching reaction(N2+)N2; Hiraoka and Nakajima, 1988
Δr106.kJ/molPHPMSTeng and Conway, 1973gas phase; switching reaction(N2+)N2
Quantity Value Units Method Reference Comment
Δr81.6J/mol*KPD/KERDKim and Bowers, 1990gas phase; switching reaction(N2+)N2; Hiraoka and Nakajima, 1988
Δr57.3J/mol*KPHPMSTeng and Conway, 1973gas phase; switching reaction(N2+)N2

(Nitrogen cation • Argon) + Argon = (Nitrogen cation • 2Argon)

By formula: (N2+ • Ar) + Ar = (N2+ • 2Ar)

Quantity Value Units Method Reference Comment
Δr16.kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase; ΔrH>
Quantity Value Units Method Reference Comment
Δr71.J/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase; ΔrH>

(Nitrogen cation • 2Argon) + Argon = (Nitrogen cation • 3Argon)

By formula: (N2+ • 2Ar) + Ar = (N2+ • 3Ar)

Quantity Value Units Method Reference Comment
Δr7.3 ± 0.8kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr57.3J/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase

(Nitrogen cation • 3Argon) + Argon = (Nitrogen cation • 4Argon)

By formula: (N2+ • 3Ar) + Ar = (N2+ • 4Ar)

Quantity Value Units Method Reference Comment
Δr7.0 ± 0.8kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase

(Nitrogen cation • 4Argon) + Argon = (Nitrogen cation • 5Argon)

By formula: (N2+ • 4Ar) + Ar = (N2+ • 5Ar)

Quantity Value Units Method Reference Comment
Δr6.6 ± 0.8kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr71.1J/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase

(Nitrogen cation • 5Argon) + Argon = (Nitrogen cation • 6Argon)

By formula: (N2+ • 5Ar) + Ar = (N2+ • 6Ar)

Quantity Value Units Method Reference Comment
Δr6.5 ± 0.8kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr72.8J/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase

(Nitrogen cation • 6Argon) + Argon = (Nitrogen cation • 7Argon)

By formula: (N2+ • 6Ar) + Ar = (N2+ • 7Ar)

Quantity Value Units Method Reference Comment
Δr6.4 ± 0.8kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr72.4J/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase

(Nitrogen cation • 7Argon) + Argon = (Nitrogen cation • 8Argon)

By formula: (N2+ • 7Ar) + Ar = (N2+ • 8Ar)

Quantity Value Units Method Reference Comment
Δr6.40kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr71.J/mol*KN/AHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated

(Nitrogen cation • 8Argon) + Argon = (Nitrogen cation • 9Argon)

By formula: (N2+ • 8Ar) + Ar = (N2+ • 9Ar)

Quantity Value Units Method Reference Comment
Δr6.36kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr71.J/mol*KN/AHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated

Nitrogen cation + helium = (Nitrogen cation • helium)

By formula: N2+ + He = (N2+ • He)

Quantity Value Units Method Reference Comment
Δr2.kJ/molPDissBieske, Soliva, et al., 1990gas phase; same ΔrH for N2+(B) and (N2+)X; ab initio, Miller, Tennyson, et al., 1988

Nitrogen cation + Nitrogen = (Nitrogen cation • Nitrogen)

By formula: N2+ + N2 = (N2+ • N2)

Quantity Value Units Method Reference Comment
Δr102. to 102.kJ/molRNGN/ARange of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr87.9J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase
Δr67.8J/mol*KPHPMSTeng and Conway, 1973gas phase
Δr81.6J/mol*KPHPMSPayzant and Kebarle, 1970gas phase
Δr46.J/mol*KDTVarney, 1968gas phase; Entropy change is questionable
Δr-4.J/mol*KDTVarney, 1959gas phase; Entropy change is questionable

(Nitrogen cation • Nitrogen) + Nitrogen = (Nitrogen cation • 2Nitrogen)

By formula: (N2+ • N2) + N2 = (N2+ • 2N2)

Quantity Value Units Method Reference Comment
Δr11.5 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Δr5.9kJ/molPILinn, Ono, et al., 1981gas phase
Quantity Value Units Method Reference Comment
Δr62.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Nitrogen cation • 2Nitrogen) + Nitrogen = (Nitrogen cation • 3Nitrogen)

By formula: (N2+ • 2N2) + N2 = (N2+ • 3N2)

Quantity Value Units Method Reference Comment
Δr11.3 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr66.1J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Nitrogen cation • 3Nitrogen) + Nitrogen = (Nitrogen cation • 4Nitrogen)

By formula: (N2+ • 3N2) + N2 = (N2+ • 4N2)

Quantity Value Units Method Reference Comment
Δr10.5 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr69.5J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Nitrogen cation • 4Nitrogen) + Nitrogen = (Nitrogen cation • 5Nitrogen)

By formula: (N2+ • 4N2) + N2 = (N2+ • 5N2)

Quantity Value Units Method Reference Comment
Δr10.3 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr85.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Nitrogen cation • 5Nitrogen) + Nitrogen = (Nitrogen cation • 6Nitrogen)

By formula: (N2+ • 5N2) + N2 = (N2+ • 6N2)

Quantity Value Units Method Reference Comment
Δr9.5 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr90.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Nitrogen cation • 6Nitrogen) + Nitrogen = (Nitrogen cation • 7Nitrogen)

By formula: (N2+ • 6N2) + N2 = (N2+ • 7N2)

Quantity Value Units Method Reference Comment
Δr8.5 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr85.4J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Nitrogen cation • 7Nitrogen) + Nitrogen = (Nitrogen cation • 8Nitrogen)

By formula: (N2+ • 7N2) + N2 = (N2+ • 8N2)

Quantity Value Units Method Reference Comment
Δr7.8 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr80.8J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Nitrogen cation • 8Nitrogen) + Nitrogen = (Nitrogen cation • 9Nitrogen)

By formula: (N2+ • 8N2) + N2 = (N2+ • 9N2)

Quantity Value Units Method Reference Comment
Δr7.4 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr81.6J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Nitrogen cation • 9Nitrogen) + Nitrogen = (Nitrogen cation • 10Nitrogen)

By formula: (N2+ • 9N2) + N2 = (N2+ • 10N2)

Quantity Value Units Method Reference Comment
Δr7.4 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr86.6J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

(Nitrogen cation • 10Nitrogen) + Nitrogen = (Nitrogen cation • 11Nitrogen)

By formula: (N2+ • 10N2) + N2 = (N2+ • 11N2)

Quantity Value Units Method Reference Comment
Δr6.9 ± 0.8kJ/molPHPMSHiraoka and Nakajima, 1988gas phase
Quantity Value Units Method Reference Comment
Δr84.5J/mol*KPHPMSHiraoka and Nakajima, 1988gas phase

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through March, 1977

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 14N2+
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
Several other much weaker X-ray emissions corresponding to higher levels of N2+.
Werme, Grennberg, et al., 1973; Werme, Grennberg, et al., 1973, 2
x 2           x → C 384.5 eV 1
Werme, Grennberg, et al., 1973; Werme, Grennberg, et al., 1973, 2
x           x → B 391.33 eV
Werme, Grennberg, et al., 1973; Werme, Grennberg, et al., 1973, 2
           x → A 3 393.34 eV
Werme, Grennberg, et al., 1973; Werme, Grennberg, et al., 1973, 2
           x → X 394.40 eV 4
Werme, Grennberg, et al., 1973; Werme, Grennberg, et al., 1973, 2
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
G 2Σg+ (195000) 5           
Gardner and Samson, 1975
C 2Σu+ 64608.1 6 2071.5 6 Z 9.29 7 -0.43 [1.5098] 8 9  4.0E-6  [1.2628] C 10 → X R 64542.0 Z
Tanaka, 1953; missing citation; missing citation; Lofthus and Krupenie, 1977
D 2Πgi 52318.2 11 907.71 Z 11.91 12 0.016 1.113 0.020  5E-6  1.471 D → A R 42654.0 Z
missing citation; Janin, d'Incan, et al., 1963
(a 4Σu+) (25467) (2398) (14)  (2.071) (0.014)     (a → X) 13 (25563.26)
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
B 2Σu+ 25461.46 2419.84 Z 23.189 14 15 -0.5375 [2.07456] 16 17 0.024 18  6.17E-6  1.0742 B ↔ X 19 20 VR 25566.04 Z
missing citation; Coster and Brons, 1931; Douglas, 1952; missing citation; Klynning and Pages, 1972; Colbourn and Douglas, 1977
A 2Πui 9166.95 21 1903.70 22 Z 15.02 15  1.7444 23 17 0.01883 23  5.6E-6 23  1.1749 A → X 24 25 R 9015.57 Z
Douglas, 1953; Colbourn and Douglas, 1977
X 2Σg+ 0 2207.00 Z 16.10 26 15 -0.040 1.93176 27 17 0.01881  [6.10E-6] 28  1.11642  

Notes

1Vertical transition.
2K state of N2 (removal of one K electron)
3Consisting of a v" progression (v"= 0...5).
4Observed X-ray emission line leading to X 2Σg+(v=0); the value predicted from the K limit and I.P.(N2) is 393.9 eV. The X-ray line has a shoulder at 394.17 eV probably corresponding to v"=1.
5Repulsive state corresponding to removal of a 2σg electron and dissociating into N(4S) + N+(2s2p3 3P), observed in photoelectron and photoion spectra with maximum at 39.8 and limit at 37.86 eV.
6Different constants are derived by Joshi, 1966 who assumes that the levels v=0,1,2 are perturbed and therefore does not include them in the evaluation: he gives Te = 64562.93 cm-1 Joshi, 1966.
7Vibrational numbering confirmed by 14N-15N isotope shifts Baer and Miescher, 1953, Namioka, Yoshino, et al., 1963, Joshi, 1966, 2. Additional vibrational levels (to v'=17) observed by Asbrink and Fridh, 1974 in the photoelectron spectrum.
8Bv(v=1)= 1.5096, Bv(v=2)= 1.5035, Bv(v=3)= 1.4970, Bv(v=4)= 1.4898, Bv(v=5)= 1.4804, Bv(v=6)= 1.4700. The shape of the Bv curve is anomalous; meaningful equilibrium constants have not been determined. Spin doubling partially resolved for high N values Carroll, 1959.
9In a discharge through He+N2 the v'=3 bands are strongly enhanced. It has been suggested Douglas, 1952 that this enhancement is due to inverse predissociation, i.e. N(4S) + N+(3P) → N2+(C 2Σu+): see also Carroll, 1959. Direct predissociation, i.e. the production of N+ ions, has been observed mass- spectrometrically Wankenne and Momigny, 1971, Wankenne, Bolduc, et al., 1975: see also Fournier, Ozenne, et al., 1970, Fournier, van de Runstraat, et al., 1971. According to Wankenne and Momigny, 1971 the "metastable" ion N2+(C 2Σu+) has a lifetime of 0.8 μs before radiationless decomposition; see, however, van de Runstraat, de Heer, et al., 1974 and 10. The question which state causes the predissociation has been the subject of much discussion Lorquet and Lorquet, 1974, Tellinghuisen and Albritton, 1975, Roche and Lefebvre-Brion, 1975 following the discovery of a large isotope effect on this predissociation Govers, van de Runstraat, et al., 1973, Govers, Fehsenfeld, et al., 1974, van de Runstraat, de Heer, et al., 1974, Govers, van de Runstraat, et al., 1975. See also Fournier, Govers, et al., 1972. Another predissociation limit at 26.70 eV above N2(X 1Σg+,v=0) and corresponding to 2D0 + 3P has been observed by Asbrink and Fridh, 1974.
10Radiative lifetime of the nonpredissociated levels τ(v≤2) = 0.09 μs Fournier, van de Runstraat, et al., 1971.
11A = -16.5.
12Vibrational numbering confirmed by 14N-15N isotope shifts Namioka, Yoshino, et al., 1963.
13The identification of this quartet-doublet transition by d'Incan and Topouzkhanian, 1975 has been questioned by Dressler, 1976 who considers it as the first negative system of 14N15N+.
14ωeze = -0.0495; these constants, derived from ω0, ω0x0, ... of Coster and Brons, 1931, represent the unperturbed vibrational levels only to v=10: for v>10 the ΔG curve shows a positive curvature. Levels observed up to v=29 Douglas, 1952.
15Experimental Franck-Condon factors for photoionization into these states from the ground state of N2 Spohr and Puttkamer, 1967, Comes and Speier, 1971, Gardner and Samson, 1974; theoretical Franck-Condon factors Lofthus and Krupenie, 1977, Albritton, Schmeltekopf, et al., 1979; see also Kosinov and Skovorodko, 1973, Lee and Rabalais, 1974.
16Spin splitting constant γ0 = +0.0229 Colbourn and Douglas, 1977: γ' - γ" = 0.015 Bouchoux, Bacis, et al., 1976. Rotational intensity distribution Bouchoux, Bacis, et al., 1976; see also Desesquelles, Cao, et al., 1975.
17RKR potential functions Singh and Rai, 1966, see also Joshi, 1966, 3, Hajj, 1975.
18Valid only to v=3. Rotational perturbations by A 2Πu in v=1,3,5,8,9,13; see Herzberg, 1928, Coster and Brons, 1931, Childs, 1932, Parker, 1933, Brons, 1934, Klynning and Pages, 1972.
19Lifetime τ(v=0) = 60.5 ns Dotchin and Chupp, 1973, Smith, Read, et al., 1975, see Dotchin and Chupp, 1973, Smith, Read, et al., 1975 and earlier work quoted by them. Perturbed rotational levels (e.g. v=1, N=13,14) have lifetimes up to τ(v=1,N=13,14)= 95 ns Dufayard, Negre, et al., 1974. f00= 0.019 Nicholls, 1963; the electronic f value at the wavelength of the 0-1 band is f= 0.034 Wray and Connolly, 1965.
20Observed in absorption in flash discharges Herzberg, 1968; laser-induced fluorescence Engelking and Smith, 1975. From intensity measurements Lee and Judge, 1973 conclude that the electronic transition moment is nearly independent of r; see, however, Nicholls, 1963, Kiselyovskii and Shimanovich, 1968, Brown and Landshoff, 1971. Franck-Condon factors Grandmontagne, Jorus, et al., 1970, Comes and Speier, 1971, Lofthus and Krupenie, 1977.
21A(v=2,3)= -74.62, small J dependence Colbourn and Douglas, 1977.
22From Janin, d'Incan, et al., 1963; Colbourn and Douglas, 1977 give ΔG(5/2) = 1813.327. Levels observed in nitrogen ion beams to v=30 Maier and Holland, 1973. Vibrational numbering confirmed by 15N2+ data Liu, 1959.
23From the rotational constants for v=2,3 Colbourn and Douglas, 1977; also Λ-type doubling constants. For higher but less accurate Bv values see Janin, d'Incan, et al., 1963. βe = +0.18E-6 Colbourn and Douglas, 1977.
24Lifetime varies from 13.9 μs for v=1 to 7.3 μs for v=8: see Peterson and Moseley, 1973,who give references to earlier work, and Gray, Roberts, et al., 1972, Maier and Holland, 1973. Transition probabilities, f values: f00= 0.00168 Cartwright, 1973.
25The bands were observed in the aurora Meinel, 1950 before they were discovered in the laboratory Douglas, 1953. Dependence of the electronic transition moment on r Koppe, Koval, et al., 1968, Cartwright, 1973, Maier and Holland, 1973, Wu and Shemansky, 1976, Mandelbaum and Feldman, 1976.
26These constants Klynning and Pages, 1972 are only very slightly different from those implied by Douglas, 1952 who gives ω0, ω0x0 ... ΔG(1/2) = 2174.728 Colbourn and Douglas, 1977.
27From B0 and B1 of Colbourn and Douglas, 1977. Spin splitting constant γ(v=0,1) =0.0083 Colbourn and Douglas, 1977; see also Bouchoux, Bacis, et al., 1976.
28D1 = 6.38E-6 Colbourn and Douglas, 1977: higher, less accurate Dv values in Klynning and Pages, 1972.
29From D00(N2) + I.P.(N) - I.P.(N2).
30From the electron impact appearance potential of N2++ Dorman and Morrison, 1963 and I.P.(N2). See also Appell, Durup, et al., 1973 and ref. given there.

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Hiraoka and Nakajima, 1988
Hiraoka, K.; Nakajima, G., A Determination of the Stabilities of N2+(N2)n and O2+(N2)n with n = 1 - 11 from Measurements of the Gas - Phase Ion Equilibria, J. Chem. Phys., 1988, 88, 12, 7709, https://doi.org/10.1063/1.454285 . [all data]

Teng and Conway, 1973
Teng, H.H.; Conway, D.C., Ion - Molecule Equilibria in Mixtures of N2 and Ar, J. Chem. Phys., 1973, 59, 5, 2316, https://doi.org/10.1063/1.1680338 . [all data]

Payzant and Kebarle, 1970
Payzant, J.D.; Kebarle, P., Clustering Equilibrium N2+ + 2N2 = N4+ + N2 and the Bond Dissociation Energy of N4+, J. Chem. Phys., 1970, 53, 12, 4723, https://doi.org/10.1063/1.1674010 . [all data]

Varney, 1968
Varney, R.N., Equilibrium Constant and Rates for the Reversible Reaction N4+ -> N2+ + N2, Phys. Rev., 1968, 174, 1, 165, https://doi.org/10.1103/PhysRev.174.165 . [all data]

Varney, 1959
Varney, R.N., Molecular Ions, J. Chem. Phys., 1959, 31, 5, 1314, https://doi.org/10.1063/1.1730590 . [all data]

Kim and Bowers, 1990
Kim, H.S.; Bowers, M.T., Energetics, Structure and Photodissociation Dynamics of the Cluster Ar.N2+, J. Chem. Phys., 1990, 93, 2, 1158, https://doi.org/10.1063/1.459179 . [all data]

Hiraoka, Mori, et al., 1992
Hiraoka, K.; Mori, T.; Yamabe, S., Gas-Phase Solvation of N2+ with Ar Atoms - A Charge Switch in the Reaction N2+(Ar)...Ar+(N2), Chem. Phys. Lett., 1992, 189, 1, 7, https://doi.org/10.1016/0009-2614(92)85144-Y . [all data]

Linn, Ono, et al., 1981
Linn, S.H.; Ono, Y.; Ng, C.Y., Molecular Beam Photoionization Study of CO, N2, and NO Dimers and Clusters, J. Chem. Phys., 1981, 74, 6, 3342, https://doi.org/10.1063/1.441486 . [all data]

Bieske, Soliva, et al., 1990
Bieske, E.J.; Soliva, A.; Welker, M.A.; Maier, J.P., The B<---X Electronic Spectrum of N2+ He, J. Chem. Phys., 1990, 93, 6, 4477, https://doi.org/10.1063/1.458732 . [all data]

Miller, Tennyson, et al., 1988
Miller, S.; Tennyson, J.; Follmeg, B.; Rosmus, P.; Werner, H., Ab initio Investigation of the Bond Rovibrational States in the Electronic Ground State of HeN2+, J. Chem. Phys., 1988, 89, 4, 2178, https://doi.org/10.1063/1.455062 . [all data]

Werme, Grennberg, et al., 1973
Werme, L.O.; Grennberg, B.; Nordgren, J.; Nordling, C.; Siegbahn, K., Fine structure in the x-ray emission spectrum of N2, compared with electron spectroscopy, Nature (London), 1973, 242, 453. [all data]

Werme, Grennberg, et al., 1973, 2
Werme, L.O.; Grennberg, B.; Nordgren, J.; Nordling, C.; Siegbahn, K., Observation of vibrational fine structure in x-ray emission lines, Phys. Rev. Lett., 1973, 30, 523. [all data]

Gardner and Samson, 1975
Gardner, J.L.; Samson, J.A.R., Photion and photelectron spectroscopy of CO and N2, J. Chem. Phys., 1975, 62, 1447. [all data]

Tanaka, 1953
Tanaka, Y., Extension of the N2+ (C→X) bands in the far ultraviolet region, J. Chem. Phys., 1953, 21, 1402. [all data]

Lofthus and Krupenie, 1977
Lofthus, A.; Krupenie, P.H., The spectrum of molecular nitrogen, J. Phys. Chem. Ref. Data, 1977, 6, 113. [all data]

Janin, d'Incan, et al., 1963
Janin, J.; d'Incan, J.; Stringat, R.; Magnaval, J., Nouvelle analyse du systeme D2Πg-A2Πu de la molecule N2+, Rev. Opt. Theor. Instrum., 1963, 42, 120. [all data]

Coster and Brons, 1931
Coster, D.; Brons, H.H., Uber einige "Schwanzbanden" der negativen stickstoff-gruppe, Z. Phys., 1931, 70, 492. [all data]

Douglas, 1952
Douglas, A.E., The near ultraviolet bands of N2+ and the dissociation energies of the N2+ and N2 molecules, Can. J. Phys., 1952, 30, 302. [all data]

Klynning and Pages, 1972
Klynning, L.; Pages, P., On the first negative system of N2+, Phys. Scr., 1972, 6, 195. [all data]

Colbourn and Douglas, 1977
Colbourn, E.A.; Douglas, A.E., A remeasurement of some constants of the O2+ and N2+ molecules, J. Mol. Spectrosc., 1977, 65, 332. [all data]

Douglas, 1953
Douglas, A.E., Analysis of the 2Π-2Σ bands of the N2+ molecule, Astrophys. J., 1953, 117, 380. [all data]

Joshi, 1966
Joshi, K.C., The spectrum of the C-X system of N2+, Proc. Phys. Soc. London, 1966, 87, 285. [all data]

Baer and Miescher, 1953
Baer, P.; Miescher, E., NO-, NO+- und N2+-Emissionsspektren im Schumanngebiet, Helv. Phys. Acta, 1953, 26, 91. [all data]

Namioka, Yoshino, et al., 1963
Namioka, T.; Yoshino, K.; Tanaka, Y., Isotope bands and the vibration assignment of the D2Πg-A2Πu system of N2+, J. Chem. Phys., 1963, 39, 2629. [all data]

Joshi, 1966, 2
Joshi, K.C., The C2Σu+ - X2Σg+ system of 15N2+, Proc. Phys. Soc. London, 1966, 87, 561. [all data]

Asbrink and Fridh, 1974
Asbrink, L.; Fridh, C., The C state of N2+, studied by photoelectron spectroscopy, Phys. Scr., 1974, 9, 338. [all data]

Carroll, 1959
Carroll, P.K., The C-X system of N2+, Can. J. Phys., 1959, 37, 880. [all data]

Wankenne and Momigny, 1971
Wankenne, H.; Momigny, J., Monomolecular and collision-induced predissociation in the mass spectrum of N2+, Int. J. Mass Spectrom. Ion Phys., 1971, 7, 227. [all data]

Wankenne, Bolduc, et al., 1975
Wankenne, H.; Bolduc, E.; Marmet, P., Ionisation dissociative de N2, Can. J. Phys., 1975, 53, 770. [all data]

Fournier, Ozenne, et al., 1970
Fournier, P.; Ozenne, J.-B.; Durup, J., Vibrational structure of predissociating molecular states: velocity spectrum of N+ fragments from fast N2+ ions, J. Chem. Phys., 1970, 53, 4095. [all data]

Fournier, van de Runstraat, et al., 1971
Fournier, P.; van de Runstraat, C.A.; Govers, T.R.; Schopman, J.; De Heer, F.J.; Los, J., Collision-induced dissociation of 10 keV N2+ ions: evidence for predissociation of the C2Σu+ state, Chem. Phys. Lett., 1971, 9, 426. [all data]

van de Runstraat, de Heer, et al., 1974
van de Runstraat, C.A.; de Heer, F.J.; Govers, T.R., Excitation and decay of the C2Σu+ state of N2+ in the case of electron impact on N2, Chem. Phys., 1974, 3, 431. [all data]

Lorquet and Lorquet, 1974
Lorquet, A.J.; Lorquet, J.C., Isotopic effects in accidental predissociation. The case of the C2Σu+ state of N2+, Chem. Phys. Lett., 1974, 26, 138. [all data]

Tellinghuisen and Albritton, 1975
Tellinghuisen, J.; Albritton, D.L., Predissociation of the C2Σ+u state of N2+, Chem. Phys. Lett., 1975, 31, 91-96. [all data]

Roche and Lefebvre-Brion, 1975
Roche, A.L.; Lefebvre-Brion, H., Some ab initio calculations related to the predissociation of the C2Σu+ state of N2+, Chem. Phys. Lett., 1975, 32, 155. [all data]

Govers, van de Runstraat, et al., 1973
Govers, T.R.; van de Runstraat, C.A.; de Heer, F.J., Isotope effects in the predissociation of the C2Σu+ state of N2+, J. Phys. B:, 1973, 6, 73. [all data]

Govers, Fehsenfeld, et al., 1974
Govers, T.R.; Fehsenfeld, F.C.; Albritton, D.L.; Fournier, P.G.; Fournier, J., Molecular isotope effects in the thermal-energy charge exchange between He+ and N2, Chem. Phys. Lett., 1974, 26, 134. [all data]

Govers, van de Runstraat, et al., 1975
Govers, T.R.; van de Runstraat, C.A.; de Heer, F.J., Excitation and decay of the C2Σu+ state of N2+ following collisions of He+ ions with N2 isotopes, Chem. Phys., 1975, 9, 285. [all data]

Fournier, Govers, et al., 1972
Fournier, P.G.; Govers, T.R.; van de Runstraat, C.A.; Schopman, J.; Los, J., Translational spectroscopy of the unimolecular dissociation N2+ → N+ + N, J. Phys. (Paris), 1972, 33, 755. [all data]

d'Incan and Topouzkhanian, 1975
d'Incan, J.; Topouzkhanian, A., High resolution analysis of collision-induced N2+ spectrum, J. Chem. Phys., 1975, 63, 2683. [all data]

Dressler, 1976
Dressler, K., On the reported 4Σu+-2Σg+ transition of N2+, J. Chem. Phys., 1976, 64, 3493. [all data]

Spohr and Puttkamer, 1967
Spohr, R.; Puttkamer, E.v., Energiemessung von Photoelektronen und Franck-Condon-Faktoren der Schwingungsubergange einiger Molekulionen, Z. Naturforsch., 1967, 22a, 705. [all data]

Comes and Speier, 1971
Comes, F.J.; Speier, F., Luminescence of diatomic molecular ions. I. Franck-Condon-factors and collisional deactivation, Z. Naturforsch. A, 1971, 26, 1998. [all data]

Gardner and Samson, 1974
Gardner, J.L.; Samson, J.A.R., Experimental vibrational intensity distributions for continuum photoionization to the X2Σ+, A2Π, and B2Σ+ states of CO+ and N2+, J. Chem. Phys., 1974, 60, 3711. [all data]

Albritton, Schmeltekopf, et al., 1979
Albritton; Schmeltekopf; Zare, Diatomic Intensity Factors, to be published, cited in Huber and Herzberg, 1979, Wiley, 1979, 1. [all data]

Kosinov and Skovorodko, 1973
Kosinov, V.A.; Skovorodko, P.A., Calculation of the Franck-Condon factors for the processes involved in the excitation of the molecular bands of the first negative system of nitrogen and carbon monoxide, Opt. Spectrosc. Engl. Transl., 1973, 35, 344, In original 587. [all data]

Lee and Rabalais, 1974
Lee, T.H.; Rabalais, J.W., Vibrational transition probabilities in photoelectron spectra, J. Chem. Phys., 1974, 61, 2747. [all data]

Bouchoux, Bacis, et al., 1976
Bouchoux, A.M.; Bacis, R.; Goure, J.P.; Lambert, A.M., Relative intensities of the rotational lines of the (0, 0) and (0, 1) bands of the B2Σu+ - X2Σg+ systems of N2+, J. Quant. Spectrosc. Radiat. Transfer, 1976, 16, 451. [all data]

Desesquelles, Cao, et al., 1975
Desesquelles, J.; Cao, G.D.; Vaissade, A., Etude de l'excitation rotationnelle de l'etat B2Σ de N2+ par impact d'ions lourds, J. Phys. (Paris), 1975, 36, 795. [all data]

Singh and Rai, 1966
Singh, R.B.; Rai, D.K., Potential-energy curves for O2+, N2+, and CO+, J. Mol. Spectrosc., 1966, 19, 424. [all data]

Joshi, 1966, 3
Joshi, K.C., Potential energy curves for the C2Σu+ and X2Σg+ states of N2+, J. Quant. Spectrosc. Radiat. Transfer, 1966, 6, 211. [all data]

Hajj, 1975
Hajj, F.Y., Internuclear potential for the B state of N2+, Phys. Lett. A, 1975, 50, 427. [all data]

Herzberg, 1928
Herzberg, G., 1. Uber die struktur der negativen stickstoffbanden, Ann. Phys. (Vierte Folge), 1928, 86, 189. [all data]

Childs, 1932
Childs, W.H.J., Peturbations and rotation constants of some first negative nitrogen bands, Proc. R. Soc. London A, 1932, 137, 641. [all data]

Parker, 1933
Parker, A.E., Rotational analysis of the perturbed (13,15) 2Σ - 2Σ N2+ band, Phys. Rev., 1933, 44, 90. [all data]

Brons, 1934
Brons, H.H., Perturbations in the (9,8) 2Σ→2Σ N2+-band, Physica (The Hague), 1934, 1, 739. [all data]

Dotchin and Chupp, 1973
Dotchin, L.W.; Chupp, E.L., Radiative lifetimes and pressure dependence of the relaxation rates of some vibronic levels in N2+, N2, CO+, and CO, J. Chem. Phys., 1973, 59, 3960. [all data]

Smith, Read, et al., 1975
Smith, A.J.; Read, F.H.; Imhof, R.E., Measurement of the lifetimes of ionic excited states using the inelastic electron-photon delayed coincidence technique, J. Phys. B:, 1975, 8, 2869. [all data]

Dufayard, Negre, et al., 1974
Dufayard, J.; Negre, J.M.; Nedelec, O., Perturbation effects on lifetimes in N2+, J. Chem. Phys., 1974, 61, 3614. [all data]

Nicholls, 1963
Nicholls, R.W., Einstein A coefficients, oscillator strengths and absolute band strengths for the N2 second positive and N2+ first negative systems, J. Atmos. Terr. Phys., 1963, 25, 218. [all data]

Wray and Connolly, 1965
Wray, K.L.; Connolly, T.J., Electronic f-number of the N2+(1-) band system, J. Quant. Spectrosc. Radiat. Transfer, 1965, 5, 633. [all data]

Herzberg, 1968
Herzberg, G., Absorption spectra of molecular ions, Comment. Pontif. Acad. Sci., 1968, 2, 15, 1-8. [all data]

Engelking and Smith, 1975
Engelking, P.C.; Smith, A.L., Tunable laser fluorescence spectroscopy of the molecular nitrogen cation at 390 nm, Chem. Phys. Lett., 1975, 36, 21. [all data]

Lee and Judge, 1973
Lee, L.C.; Judge, D.L., The electronic transition moment of the N2+ (B2Σu+ → X2Σg+) system, J. Phys. B:, 1973, 6, 121. [all data]

Kiselyovskii and Shimanovich, 1968
Kiselyovskii, L.I.; Shimanovich, V.D., Experimental determination of the matrix elements of the electronic transition dipole moment in the first negative band system of the N2+ molecule using an arc filament in an axial-vortex air flow, Opt. Spectrosc. Engl. Transl., 1968, 24, 266, In original 506. [all data]

Brown and Landshoff, 1971
Brown, W.A.; Landshoff, R.K., The electronic transition moment of the N2+ first negative system, J. Quant. Spectrosc. Radiat. Transfer, 1971, 11, 1143. [all data]

Grandmontagne, Jorus, et al., 1970
Grandmontagne, R.; Jorus, A.-M.; Vincent, F., Calcul theorique des intensites de bandes du premier systeme negatif de l'azote, J. Phys. (Paris), 1970, 31, 749. [all data]

Maier and Holland, 1973
Maier, W.B., II; Holland, R.F., Visible and near ultraviolet light produced by the radiative decay of the long-lived states in a nitrogen ion beam, J. Chem. Phys., 1973, 59, 4501. [all data]

Liu, 1959
Liu, I.D., The vibrational numbering of the A2Π-X2Σ bands of N2+, Astrophys. J., 1959, 129, 516. [all data]

Peterson and Moseley, 1973
Peterson, J.R.; Moseley, J.T., Time-of-flight determination of lifetimes of N2+(A2Πu)- the Meinel band system, J. Chem. Phys., 1973, 58, 172. [all data]

Gray, Roberts, et al., 1972
Gray, D.D.; Roberts, T.D.; Morack, J.L., Measured lifetimes of some A 2Πu vibrational levels of N2+ molecules, J. Chem. Phys., 1972, 57, 4190. [all data]

Cartwright, 1973
Cartwright, D.C., Transition probabilities for the Meinel band system of N2+, J. Chem. Phys., 1973, 58, 178. [all data]

Meinel, 1950
Meinel, A.B., A new band system of N2+ in the infrared auroral spectrum, Astrophys. J., 1950, 112, 562. [all data]

Koppe, Koval, et al., 1968
Koppe, V.T.; Koval, A.G.; Gritsyna, V.V.; Fogel, Ya.M., Dependence of the electronic transition moment Re upon the internuclear spacing r for the Meinel band system of the N2+ ion, Opt. Spectrosc. Engl. Transl., 1968, 24, 440. [all data]

Wu and Shemansky, 1976
Wu, H.H.; Shemansky, D.E., Electronic transition moment of the N2+(A2Πu-X2Σg+) system, J. Chem. Phys., 1976, 64, 1134. [all data]

Mandelbaum and Feldman, 1976
Mandelbaum, D.; Feldman, P.D., Electron impact excitation of the Meinel band system of N2+, J. Chem. Phys., 1976, 65, 672. [all data]

Dorman and Morrison, 1963
Dorman, F.H.; Morrison, J.D., Ionization potentials of doubly charged oxygen and nitrogen, J. Chem. Phys., 1963, 39, 1906. [all data]

Appell, Durup, et al., 1973
Appell, J.; Durup, J.; Fehsenfeld, F.C.; Fournier, P., Double charge transfer spectroscopy of diatomic molecules, J. Phys. B:, 1973, 6, 197. [all data]

Huber and Herzberg, 1979
Huber, K.P.; Herzberg, G., Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Company, New York, 1979, 716. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, Constants of diatomic molecules, References