lithium hydride
- Formula: HLi
- Molecular weight: 7.949
- IUPAC Standard InChIKey: SIAPCJWMELPYOE-UHFFFAOYSA-N
- CAS Registry Number: 7580-67-8
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Condensed phase thermochemistry data
Go To: Top, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -18.57 | kcal/mol | Review | Chase, 1998 | Data last reviewed in September, 1967 |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid,1 bar | 5.313 | cal/mol*K | Review | Chase, 1998 | Data last reviewed in September, 1967 |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH°solid | -21.66 | kcal/mol | Review | Chase, 1998 | Data last reviewed in September, 1967 |
Quantity | Value | Units | Method | Reference | Comment |
S°solid | 4.787 | cal/mol*K | Review | Chase, 1998 | Data last reviewed in September, 1967 |
Liquid Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (cal/mol*K)
H° = standard enthalpy (kcal/mol)
S° = standard entropy (cal/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 961.8 to 2000. |
---|---|
A | 14.90010 |
B | 0.000000 |
C | 0.000000 |
D | 0.000000 |
E | 0.000000 |
F | -23.01670 |
G | 23.34380 |
H | -18.57410 |
Reference | Chase, 1998 |
Comment | Data last reviewed in September, 1967 |
Solid Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (cal/mol*K)
H° = standard enthalpy (kcal/mol)
S° = standard entropy (cal/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 961.8 |
---|---|
A | 3.694652 |
B | 12.65110 |
C | -0.023894 |
D | 0.006989 |
E | -0.069710 |
F | -23.55760 |
G | 5.096451 |
H | -21.65990 |
Reference | Chase, 1998 |
Comment | Data last reviewed in September, 1967 |
Constants of diatomic molecules
Go To: Top, Condensed phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Klaus P. Huber and Gerhard H. Herzberg
Data collected through January, 1977
Symbol | Meaning |
---|---|
State | electronic state and / or symmetry symbol |
Te | minimum electronic energy (cm-1) |
ωe | vibrational constant – first term (cm-1) |
ωexe | vibrational constant – second term (cm-1) |
ωeye | vibrational constant – third term (cm-1) |
Be | rotational constant in equilibrium position (cm-1) |
αe | rotational constant – first term (cm-1) |
γe | rotation-vibration interaction constant (cm-1) |
De | centrifugal distortion constant (cm-1) |
βe | rotational constant – first term, centrifugal force (cm-1) |
re | internuclear distance (Å) |
Trans. | observed transition(s) corresponding to electronic state |
ν00 | position of 0-0 band (units noted in table) |
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
For ab initio calculations of X 1Σ, A 1Σ, B 1Π, a 3Σ, b 3Π (lowest stable triplet state at ~1700 cm-1 below B 1Π see Docken and Hinze, 1972. Excitation energies and oscillator strengths for higher-lying states have been computed by Stewart, Watson, et al., 1975. The most recent ground state studies are those of Meyer and Rosmus, 1975 and Yardley and Balint-Kurti, 1976, the latter including other low-lying 1Σ+ states. | ||||||||||||
B 1Π | 34912 | [130.73] Z | 1 | 3.383 2 3 | 0.986 | -0.045 | [2.6E-3] 4 | 2.378 | B ← X R | 34312.26 Z | ||
↳missing citation | ||||||||||||
A 1Σ+ | 26516 | [280.96] 5 Z | [2.8536] 5 3 | [1.187E-3] 5 | 2.605 | A ↔ X 6 7 R | 25943.13 Z | |||||
↳Crawford and Jorgensen, 1935 | ||||||||||||
X 1Σ+ | 0 | 1405.65 Z | 23.20 | 0.163 | 7.5131 3 | 0.2132 8 | 0.00075 | 0.8617E-3 9 | -0.0160E-3 | 1.5957 10 | ||
↳Klemperer, 1955; Norris and Klemperer, 1958; James, Norris, et al., 1960 | ||||||||||||
Mol. beam electric 11 | ||||||||||||
↳Wharton, Gold, et al., 1960; Rothstein, 1969; Freeman, Jacobson, et al., 1975 | ||||||||||||
and magn. Reson. | ||||||||||||
↳Lawrence, Anderson, et al., 1963 |
Notes
1 | ΔG(3/2) = 45.9. |
2 | Predissociation by rotation; breaking off above J'= 8,5,2 in v' = 0,1,2, respectively; see also Way and Stwalley, 1973. Dissociation limit at 34492.5 cm-1 above X 1Σ, v"=0, J"=0. |
3 | RKR potential curves Fallon, Vanderslice, et al., 1960; Singh and Jain, 1962[A state]; Way and Stwalley, 1973 [B state combination with long-range tail and exponential inner wall]. |
4 | D1 = 4.8E-3; H0 = -1.7E-5, H1 = -5.6E-5. |
5 | ΔG(v+1/2), Bv, Dv, Hv have been determined up to v=14. The ΔG and Bv curve have maxima for v=9 and 3, respectively; ωe ~ 235, ωexe ~ -28, ωeye ~ -4; Be ~ 2.819, αe ~ -0.078, γe ~ -0.026 and higher order constants. |
6 | Radiative lifetimes τ(v',J'): τ(2,3) = 29.4 ns, τ(5,3) = 30.5 ns, τ(7,12) ~ 36.9 ns Dagdigian, 1976; τ(5,5-15) = 31 ns Wine and Melton, 1976. |
7 | Intensity distribution in the v'-0 bands Fernandez-Florez and Velasco, 1969; RKR Franck-Condon factors Halmann and Laulicht, 1967. The A-X system of 6LiH was analyzed by Velasco and Rivero, 1974. |
8 | All rotational constants are from v = 0,1,2 only. |
9 | See 8. Hv = 11.4E-8 - ... |
10 | Rot.-vibr. sp. |
11 | μel(v=0,1,2) = 5.8820, 5.9905, 6.098 D Wharton, Gold, et al., 1960, Rothstein, 1969. Hyperfine structure constants Wharton, Gold, et al., 1960, Rothstein, 1969, Freeman, Jacobson, et al., 1975. Zeeman spectrum Freeman, Jacobson, et al., 1975, gJ(v=0,J=1) = -0.65842 Freeman, Jacobson, et al., 1975 in agreement with an earlier less precise value obtained by Lawrence, Anderson, et al., 1963, using the magnetic resonance method. For a combination of both theoretical Docken and Hinze, 1972, and experimental results see Docken and Freeman, 1974. |
12 | From the predissociation in B 1Π; the evaluation by Way and Stwalley, 1973 takes into account the long-range potential of this state. |
References
Go To: Top, Condensed phase thermochemistry data, Constants of diatomic molecules, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Docken and Hinze, 1972
Docken, K.K.; Hinze, J.,
LiH potential curves and wavefunctions for X1Σ+, A1Σ+, B1Π, 3Σ+, and 3Π,
J. Chem. Phys., 1972, 57, 4928. [all data]
Stewart, Watson, et al., 1975
Stewart, R.F.; Watson, D.K.; Dalgarno, A.,
Variational time-dependent Hartree-Fock calculations. I. Applications to four-electron atomic and molecular systems,
J. Chem. Phys., 1975, 63, 3222. [all data]
Meyer and Rosmus, 1975
Meyer, W.; Rosmus, P.,
PNO-Cl and CEPA studies of electron correlation effects. III. Spectroscopic constants and dipole moment functions for the ground states of the first-row and second-row diatomic hydrides,
J. Chem. Phys., 1975, 63, 2356. [all data]
Yardley and Balint-Kurti, 1976
Yardley, R.N.; Balint-Kurti, G.G.,
Ab initio valence-bond calculations on HF, LiH, LiH+ and LiF,
Mol. Phys., 1976, 31, 921. [all data]
Crawford and Jorgensen, 1935
Crawford, F.H.; Jorgensen, T., Jr.,
The band spectra of the hydrides of lithium,
Phys. Rev., 1935, 47, 932. [all data]
Klemperer, 1955
Klemperer, W.,
Infrared spectrum of LiH,
J. Chem. Phys., 1955, 23, 2452. [all data]
Norris and Klemperer, 1958
Norris, W.G.; Klemperer, W.,
Dipole derivative of lithium hydride,
J. Chem. Phys., 1958, 28, 749. [all data]
James, Norris, et al., 1960
James, T.C.; Norris, W.G.; Klemperer, W.,
Infrared spectrum and dipole moment function of lithium hydride,
J. Chem. Phys., 1960, 32, 728. [all data]
Wharton, Gold, et al., 1960
Wharton, L.; Gold, L.P.; Klemperer, W.,
Dipole moment of lithium hydride,
J. Chem. Phys., 1960, 33, 1255. [all data]
Rothstein, 1969
Rothstein, E.,
Molecular constants of lithium hydrides by the molecular-beam electric resonance method,
J. Chem. Phys., 1969, 50, 1899. [all data]
Freeman, Jacobson, et al., 1975
Freeman, R.R.; Jacobson, A.R.; Johnson, D.W.; Ramsey, N.F.,
The molecular Zeeman and hyperfine spectra of LiH and LiD by molecular beam high resolution electric resonance,
J. Chem. Phys., 1975, 63, 2597. [all data]
Lawrence, Anderson, et al., 1963
Lawrence, T.R.; Anderson, C.H.; Ramsey, N.F.,
Rotational magnetic moments of lithium hydride and deuteride,
Phys. Rev., 1963, 130, 1865. [all data]
Way and Stwalley, 1973
Way, K.R.; Stwalley, W.C.,
Accurate dissociation energies from rotational predissociation and long-range forces: B1Π LiH,
J. Chem. Phys., 1973, 59, 5298. [all data]
Fallon, Vanderslice, et al., 1960
Fallon, R.J.; Vanderslice, J.T.; Mason, E.A.,
Erratum: Potential curves for HF and LiH,
J. Chem. Phys., 1960, 33, 944. [all data]
Singh and Jain, 1962
Singh, N.L.; Jain, D.C.,
The Rydberg-Klein-Rees method of constructing the true potential energy curves of diatomic molecules,
Proc. Phys. Soc. London, 1962, 79, 274. [all data]
Dagdigian, 1976
Dagdigian, P.J.,
Detection of LiH and NaH molecular beams by laser fluorescence and measurement of radiative lifetimes of the A1Σ+ state,
J. Chem. Phys., 1976, 64, 2609. [all data]
Wine and Melton, 1976
Wine, P.H.; Melton, L.A.,
Radiative lifetime of LiH A1Σ+,
J. Chem. Phys., 1976, 64, 2692. [all data]
Fernandez-Florez and Velasco, 1969
Fernandez-Florez, I.; Velasco, R.,
Contribucion al estudio de la molecula LiH: distribucion de intensidades en el sistema A-X,
Opt. Pura Apl., 1969, 2, 123. [all data]
Halmann and Laulicht, 1967
Halmann, M.; Laulicht, I.,
Isotope effects on Franck-Condon factors. VII. Vibrational intensity distribution in the H2 Lyman, H2 Werner, O2 Schumann-Runge, N2 first positive, N2 Vegard-Kaplan, and LiH (A-X) systems based on PKR potentials,
J. Chem. Phys., 1967, 46, 2684. [all data]
Velasco and Rivero, 1974
Velasco, R.; Rivero, F.,
Espectro de absorcion de la molecula 6LiH,
Opt. Pura Apl., 1974, 7, 45. [all data]
Docken and Freeman, 1974
Docken, K.K.; Freeman, R.R.,
Some molecular properties of LiH and LiD,
J. Chem. Phys., 1974, 61, 4217. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Constants of diatomic molecules, References
- Symbols used in this document:
S°liquid,1 bar Entropy of liquid at standard conditions (1 bar) S°solid Entropy of solid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.