lithium hydride


Condensed phase thermochemistry data

Go To: Top, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfliquid-18.57kcal/molReviewChase, 1998Data last reviewed in September, 1967
Quantity Value Units Method Reference Comment
liquid,1 bar5.313cal/mol*KReviewChase, 1998Data last reviewed in September, 1967
Quantity Value Units Method Reference Comment
Δfsolid-21.66kcal/molReviewChase, 1998Data last reviewed in September, 1967
Quantity Value Units Method Reference Comment
solid4.787cal/mol*KReviewChase, 1998Data last reviewed in September, 1967

Liquid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 961.8 to 2000.
A 14.90010
B 0.000000
C 0.000000
D 0.000000
E 0.000000
F -23.01670
G 23.34380
H -18.57410
ReferenceChase, 1998
Comment Data last reviewed in September, 1967

Solid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 961.8
A 3.694652
B 12.65110
C -0.023894
D 0.006989
E -0.069710
F -23.55760
G 5.096451
H -21.65990
ReferenceChase, 1998
Comment Data last reviewed in September, 1967

Constants of diatomic molecules

Go To: Top, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through January, 1977

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 7LiH
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
For ab initio calculations of X 1Σ, A 1Σ, B 1Π, a 3Σ, b 3Π (lowest stable triplet state at ~1700 cm-1 below B 1Π see Docken and Hinze, 1972. Excitation energies and oscillator strengths for higher-lying states have been computed by Stewart, Watson, et al., 1975. The most recent ground state studies are those of Meyer and Rosmus, 1975 and Yardley and Balint-Kurti, 1976, the latter including other low-lying 1Σ+ states.
B 1Π 34912 [130.73] Z 1  3.383 2 3 0.986 -0.045 [2.6E-3] 4  2.378 B ← X R 34312.26 Z
missing citation
A 1Σ+ 26516 [280.96] 5 Z   [2.8536] 5 3   [1.187E-3] 5  2.605 A ↔ X 6 7 R 25943.13 Z
Crawford and Jorgensen, 1935
X 1Σ+ 0 1405.65 Z 23.20 0.163 7.5131 3 0.2132 8 0.00075 0.8617E-3 9 -0.0160E-3 1.5957 10  
Klemperer, 1955; Norris and Klemperer, 1958; James, Norris, et al., 1960
Mol. beam electric 11
Wharton, Gold, et al., 1960; Rothstein, 1969; Freeman, Jacobson, et al., 1975
and magn. Reson.
Lawrence, Anderson, et al., 1963

Notes

1ΔG(3/2) = 45.9.
2Predissociation by rotation; breaking off above J'= 8,5,2 in v' = 0,1,2, respectively; see also Way and Stwalley, 1973. Dissociation limit at 34492.5 cm-1 above X 1Σ, v"=0, J"=0.
3RKR potential curves Fallon, Vanderslice, et al., 1960; Singh and Jain, 1962[A state]; Way and Stwalley, 1973 [B state combination with long-range tail and exponential inner wall].
4D1 = 4.8E-3; H0 = -1.7E-5, H1 = -5.6E-5.
5ΔG(v+1/2), Bv, Dv, Hv have been determined up to v=14. The ΔG and Bv curve have maxima for v=9 and 3, respectively; ωe ~ 235, ωexe ~ -28, ωeye ~ -4; Be ~ 2.819, αe ~ -0.078, γe ~ -0.026 and higher order constants.
6Radiative lifetimes τ(v',J'): τ(2,3) = 29.4 ns, τ(5,3) = 30.5 ns, τ(7,12) ~ 36.9 ns Dagdigian, 1976; τ(5,5-15) = 31 ns Wine and Melton, 1976.
7Intensity distribution in the v'-0 bands Fernandez-Florez and Velasco, 1969; RKR Franck-Condon factors Halmann and Laulicht, 1967. The A-X system of 6LiH was analyzed by Velasco and Rivero, 1974.
8All rotational constants are from v = 0,1,2 only.
9See 8. Hv = 11.4E-8 - ...
10Rot.-vibr. sp.
11μel(v=0,1,2) = 5.8820, 5.9905, 6.098 D Wharton, Gold, et al., 1960, Rothstein, 1969. Hyperfine structure constants Wharton, Gold, et al., 1960, Rothstein, 1969, Freeman, Jacobson, et al., 1975. Zeeman spectrum Freeman, Jacobson, et al., 1975, gJ(v=0,J=1) = -0.65842 Freeman, Jacobson, et al., 1975 in agreement with an earlier less precise value obtained by Lawrence, Anderson, et al., 1963, using the magnetic resonance method. For a combination of both theoretical Docken and Hinze, 1972, and experimental results see Docken and Freeman, 1974.
12From the predissociation in B 1Π; the evaluation by Way and Stwalley, 1973 takes into account the long-range potential of this state.

References

Go To: Top, Condensed phase thermochemistry data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Docken and Hinze, 1972
Docken, K.K.; Hinze, J., LiH potential curves and wavefunctions for X1Σ+, A1Σ+, B1Π, 3Σ+, and 3Π, J. Chem. Phys., 1972, 57, 4928. [all data]

Stewart, Watson, et al., 1975
Stewart, R.F.; Watson, D.K.; Dalgarno, A., Variational time-dependent Hartree-Fock calculations. I. Applications to four-electron atomic and molecular systems, J. Chem. Phys., 1975, 63, 3222. [all data]

Meyer and Rosmus, 1975
Meyer, W.; Rosmus, P., PNO-Cl and CEPA studies of electron correlation effects. III. Spectroscopic constants and dipole moment functions for the ground states of the first-row and second-row diatomic hydrides, J. Chem. Phys., 1975, 63, 2356. [all data]

Yardley and Balint-Kurti, 1976
Yardley, R.N.; Balint-Kurti, G.G., Ab initio valence-bond calculations on HF, LiH, LiH+ and LiF, Mol. Phys., 1976, 31, 921. [all data]

Crawford and Jorgensen, 1935
Crawford, F.H.; Jorgensen, T., Jr., The band spectra of the hydrides of lithium, Phys. Rev., 1935, 47, 932. [all data]

Klemperer, 1955
Klemperer, W., Infrared spectrum of LiH, J. Chem. Phys., 1955, 23, 2452. [all data]

Norris and Klemperer, 1958
Norris, W.G.; Klemperer, W., Dipole derivative of lithium hydride, J. Chem. Phys., 1958, 28, 749. [all data]

James, Norris, et al., 1960
James, T.C.; Norris, W.G.; Klemperer, W., Infrared spectrum and dipole moment function of lithium hydride, J. Chem. Phys., 1960, 32, 728. [all data]

Wharton, Gold, et al., 1960
Wharton, L.; Gold, L.P.; Klemperer, W., Dipole moment of lithium hydride, J. Chem. Phys., 1960, 33, 1255. [all data]

Rothstein, 1969
Rothstein, E., Molecular constants of lithium hydrides by the molecular-beam electric resonance method, J. Chem. Phys., 1969, 50, 1899. [all data]

Freeman, Jacobson, et al., 1975
Freeman, R.R.; Jacobson, A.R.; Johnson, D.W.; Ramsey, N.F., The molecular Zeeman and hyperfine spectra of LiH and LiD by molecular beam high resolution electric resonance, J. Chem. Phys., 1975, 63, 2597. [all data]

Lawrence, Anderson, et al., 1963
Lawrence, T.R.; Anderson, C.H.; Ramsey, N.F., Rotational magnetic moments of lithium hydride and deuteride, Phys. Rev., 1963, 130, 1865. [all data]

Way and Stwalley, 1973
Way, K.R.; Stwalley, W.C., Accurate dissociation energies from rotational predissociation and long-range forces: B1Π LiH, J. Chem. Phys., 1973, 59, 5298. [all data]

Fallon, Vanderslice, et al., 1960
Fallon, R.J.; Vanderslice, J.T.; Mason, E.A., Erratum: Potential curves for HF and LiH, J. Chem. Phys., 1960, 33, 944. [all data]

Singh and Jain, 1962
Singh, N.L.; Jain, D.C., The Rydberg-Klein-Rees method of constructing the true potential energy curves of diatomic molecules, Proc. Phys. Soc. London, 1962, 79, 274. [all data]

Dagdigian, 1976
Dagdigian, P.J., Detection of LiH and NaH molecular beams by laser fluorescence and measurement of radiative lifetimes of the A1Σ+ state, J. Chem. Phys., 1976, 64, 2609. [all data]

Wine and Melton, 1976
Wine, P.H.; Melton, L.A., Radiative lifetime of LiH A1Σ+, J. Chem. Phys., 1976, 64, 2692. [all data]

Fernandez-Florez and Velasco, 1969
Fernandez-Florez, I.; Velasco, R., Contribucion al estudio de la molecula LiH: distribucion de intensidades en el sistema A-X, Opt. Pura Apl., 1969, 2, 123. [all data]

Halmann and Laulicht, 1967
Halmann, M.; Laulicht, I., Isotope effects on Franck-Condon factors. VII. Vibrational intensity distribution in the H2 Lyman, H2 Werner, O2 Schumann-Runge, N2 first positive, N2 Vegard-Kaplan, and LiH (A-X) systems based on PKR potentials, J. Chem. Phys., 1967, 46, 2684. [all data]

Velasco and Rivero, 1974
Velasco, R.; Rivero, F., Espectro de absorcion de la molecula 6LiH, Opt. Pura Apl., 1974, 7, 45. [all data]

Docken and Freeman, 1974
Docken, K.K.; Freeman, R.R., Some molecular properties of LiH and LiD, J. Chem. Phys., 1974, 61, 4217. [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Constants of diatomic molecules, References