Butane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
liquid231.0J/mol*KN/AAston and Messerly, 1940Using extrapolated values of Cp 273 to 298 K for the superheated liquid.
liquid226.8J/mol*KN/AParks, Shomate, et al., 1937Calculated from heat capacity data reported by 31HUF/PAR. Extrapolation below 67 K, 41.34 J/mol*K.
liquid229.7J/mol*KN/AHuffman, Parks, et al., 1931Extrapolation below 90 K, 48.95 J/mol*K. Extrapolated above 262 K.

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
132.42270.Aston and Messerly, 1940T = 11 to 270 K.
129.7261.8Huffman, Parks, et al., 1931T = 69 to 262 K. Value is unsmoothed experimental datum.

Henry's Law data

Go To: Top, Condensed phase thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.0011 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
0.0011 LN/A 
0.00123100.LN/A 
0.0011 VN/A 
0.0049 VN/A 

IR Spectrum

Go To: Top, Condensed phase thermochemistry data, Henry's Law data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty


Mass spectrum (electron ionization)

Go To: Top, Condensed phase thermochemistry data, Henry's Law data, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 18940

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Vibrational and/or electronic energy levels

Go To: Top, Condensed phase thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Trans form     Symmetry:   C2h     Symmetry Number σ = 2


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

ag 1 CH3 d-str 2965  C  ia 2965 sln. SF20)
ag 2 CH3 s-str 2872  C  ia 2872 sln.
ag 3 CH2 s-str 2853  D  ia 2853 sln.
ag 4 CH3 d-deform 1460  C  ia 1460 sln. SF22)
ag 5 CH2 scis 1442  D  ia 1442 sln.
ag 6 CH3 s-deform 1382  C  ia CF
ag 7 CH2 wag 1361  D  ia CF
ag 8 CH3 rock 1151  C  ia 1151 sln.
ag 9 CC str 1059  C  ia 1059 sln.
ag 10 CC str 837  C  ia 837 sln.
ag 11 CCC deform 425  C  ia 425 sln.
au 12 CH3 d-str 2968  C 2968 S solid solid  ia SF27)
au 13 CH2 a-str 2930  C 2930 S solid solid  ia
au 14 CH3 d-deform 1461  C 1461 S solid solid  ia SF30, )OV3031)
au 15 CH2 twist 1257  C 1257 W sln.  ia
au 16 CH3 rock 948  B 948 M solid solid  ia
au 17 CH2 rock 731  B 731 S solid solid  ia
au 18 CH3-CH2 torsion 194  E  ia CF
au 19 CH2-CH2 torsion 102  E  ia CF
bg 20 CH3 d-str 2965  C  ia 2965 sln. SF1)
bg 21 CH2 a-str 2912  C  ia 2912 sln.
bg 22 CH3 d-deform 1460  C  ia 1460 sln. SF4)
bg 23 CH2 twist 1300  C  ia 1300 sln.
bg 24 CH3 rock 1180  D  ia CF
bg 25 CH2 rock 803  D  ia CF
bg 26 CH3-CH2 torsion 225  E  ia CF
bu 27 CH3 d-str 2968  C 2968 S solid solid  ia SF12)
bu 28 CH3 s-str 2870  C 2870 S solid solid  ia
bu 29 CH2 s-str 2853  E  ia SF3)
bu 30 CH3 d-deform 1461  C 1461 S solid solid  ia SF14, )OV1431)
bu 31 CH2 scis 1461  C 1461 S solid solid  ia OV1430)
bu 32 CH3 s-deform 1379  B 1379 M solid solid  ia
bu 33 CH2 wag 1290  B 1290 W solid solid  ia
bu 34 CC str 1009  C 1009 W sln.  ia
bu 35 CH3 rock 964  B 964 M solid solid  ia
bu 36 CCC deform 271  E  ia CF

Source: Shimanouchi, 1972

Gauche form     Symmetry:   C2     Symmetry Number σ = 2


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a 1 CH3 d-str 2968  C Deduced from the corresponding frequencies of the trans form
a 2 CH3 d-str 2968  C Deduced from the corresponding frequencies of the trans form
a 3 CH2 a-str 2920  D Deduced from the corresponding frequencies of the trans form
a 4 CH3 s-str 2870  C Deduced from the corresponding frequencies of the trans form
a 5 CH2 s-str 2860  D Deduced from the corresponding frequencies of the trans form
a 6 CH3 d-deform 1460  C Deduced from the corresponding frequencies of the trans form
a 7 CH3 d-deform 1460  C Deduced from the corresponding frequencies of the trans form
a 8 CH2 scis 1450  D Deduced from the corresponding frequencies of the trans form
a 9 CH3 s-deform 1380  C Deduced from the corresponding frequencies of the trans form
a 10 CH2 wag 1350  C 1350 W liq.
a 11 CH2 twist 1281  C 1281 liq.
a 12 CH3 rock 1168  D 1168 liq.
a 13 CC str 1077  D 1077 liq.
a 14 CH3 rock 980  D 980 liq. OV32)
a 15 CC str 827  D 827 liq.
a 16 CH2 rock 788  C 788 M liq. 789 liq.
a 17 CCC deform 320  C 320 liq.
a 18 CH3-CH2 torsion 201  E CF
a 19 CH2-CH2 torsion 101  E CF
b 20 CH3 d-str 2968  C Deduced from the corresponding frequencies of the trans form
b 21 CH3 d-str 2968  C Deduced from the corresponding frequencies of the trans form
b 22 CH2 a-str 2920  D Deduced from the corresponding frequencies of the trans form
b 23 CH3 s-str 2870  C Deduced from the corresponding frequencies of the trans form
b 24 CH2 s-str 2860  D Deduced from the corresponding frequencies of the trans form
b 25 CH3 d-deform 1460  C Deduced from the corresponding frequencies of the trans form
b 26 CH3 d-deform 1460  C Deduced from the corresponding frequencies of the trans form
b 27 CH2 scis 1450  D Deduced from the corresponding frequencies of the trans form
b 28 CH3 s-deform 1380  C Deduced from the corresponding frequencies of the trans form
b 29 CH2 wag 1370  D 1370 VW liq.
b 30 CH2 twist 1233  C 1233 W liq.
b 31 CC str 1133  D 1133 M liq.
b 32 CH3 rock 980  D 980 liq. OV1430)
b 33 CH3 rock 955  C 955 liq.
b 34 CH2 rock 747  C 747 S liq.
b 35 CCC deform 469  D CF
b 36 CH3-CH2 torsion 197  E CF

Source: Shimanouchi, 1972

Notes

SStrong
MMedium
WWeak
VWVery weak
iaInactive
CFCalculated frequency
SFCalculation shows that the frequency approximately equals that of the vibration indicated in the parentheses.
OVOverlapped by band indicated in parentheses.
B1~3 cm-1 uncertainty
C3~6 cm-1 uncertainty
D6~15 cm-1 uncertainty
E15~30 cm-1 uncertainty

References

Go To: Top, Condensed phase thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Aston and Messerly, 1940
Aston, J.G.; Messerly, G.H., The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of n-butane, J. Am. Chem. Soc., 1940, 62, 1917-1923. [all data]

Parks, Shomate, et al., 1937
Parks, G.S.; Shomate, C.H.; Kennedy, W.D.; Crawford, B.L., Jr., The entropies of n-butane and isobutane, with some heat capacity data for isobutane, J. Chem. Phys., 1937, 5, 359-363. [all data]

Huffman, Parks, et al., 1931
Huffman, H.M.; Parks, G.S.; Barmore, M., Thermal data on organic compounds. X. Further studies on the heat capacities, entropies and free energies of hydrocarbons, J. Am. Chem. Soc., 1931, 53, 3876-3888. [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References