lithium iodide
- Formula: ILi
- Molecular weight: 133.845
- IUPAC Standard InChIKey: HSZCZNFXUDYRKD-UHFFFAOYSA-M
- CAS Registry Number: 10377-51-2
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Condensed phase thermochemistry data
Go To: Top, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -258.35 | kJ/mol | Review | Chase, 1998 | Data last reviewed in June, 1966 |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid,1 bar | 98.61 | J/mol*K | Review | Chase, 1998 | Data last reviewed in June, 1966 |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH°solid | -270.08 | kJ/mol | Review | Chase, 1998 | Data last reviewed in June, 1966 |
Quantity | Value | Units | Method | Reference | Comment |
S°solid | 85.65 | J/mol*K | Review | Chase, 1998 | Data last reviewed in June, 1966 |
Liquid Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 742. to 2500. |
---|---|
A | 63.17798 |
B | -5.685763×10-10 |
C | 4.080517×10-10 |
D | -8.942505×10-11 |
E | -1.004394×10-11 |
F | -277.1854 |
G | 175.0669 |
H | -258.3494 |
Reference | Chase, 1998 |
Comment | Data last reviewed in June, 1966 |
Solid Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 742. |
---|---|
A | 101.5068 |
B | -192.2945 |
C | 285.8199 |
D | -121.6126 |
E | -1.447109 |
F | -298.9757 |
G | 246.0527 |
H | -270.0772 |
Reference | Chase, 1998 |
Comment | Data last reviewed in June, 1966 |
Constants of diatomic molecules
Go To: Top, Condensed phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Klaus P. Huber and Gerhard H. Herzberg
Data collected through January, 1977
Symbol | Meaning |
---|---|
State | electronic state and / or symmetry symbol |
Te | minimum electronic energy (cm-1) |
ωe | vibrational constant – first term (cm-1) |
ωexe | vibrational constant – second term (cm-1) |
ωeye | vibrational constant – third term (cm-1) |
Be | rotational constant in equilibrium position (cm-1) |
αe | rotational constant – first term (cm-1) |
γe | rotation-vibration interaction constant (cm-1) |
De | centrifugal distortion constant (cm-1) |
βe | rotational constant – first term, centrifugal force (cm-1) |
re | internuclear distance (Å) |
Trans. | observed transition(s) corresponding to electronic state |
ν00 | position of 0-0 band (units noted in table) |
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Peaks in the electron energy loss spectrum at 7.3 and 9.7 eV. | ||||||||||||
↳Geiger and Pfeiffer, 1968 | ||||||||||||
Continuous absorption above 28600 cm-1 with maximum at 33900 and 45000 cm-1.1 | ||||||||||||
↳Berry and Klemperer, 1957; Levi, 1934 | ||||||||||||
A 2 | A ← X | |||||||||||
↳Berry and Klemperer, 1957; Levi, 1934 | ||||||||||||
X 1Σ+ | 0 | 498.16 (Z) | 3.39 3 | 0.08 | 0.4431820 | 0.004090 4 | 0.0000153 | 1.448E-6 | 2.391924 5 | |||
↳Klemperer and Rice, 1957; Klemperer, Norris, et al., 1960 | ||||||||||||
6 | ||||||||||||
↳Honig, Mandel, et al., 1954; Rusk and Gordy, 1962; Breivogel, Hebert, et al., 1965 | ||||||||||||
7 | ||||||||||||
↳Breivogel, Hebert, et al., 1965; Jacobson and Ramsey, 1976 | ||||||||||||
8 |
Notes
1 | Absorption cross sections Davidovits and Brodhead, 1967. UV absorption in inert matrices Oppenheimer and Berry, 1971 shows banded structure in the region 34500-40000 cm-1 indicating the existence of a stable upper state (possibly lowest excited 0+) with ωe ~365. |
2 | Diffuse absorption bands from 29146 to 24507 cm-1. 10 |
3 | Vibrational constants from the IR spectra Klemperer, Norris, et al., 1960. |
4 | For constants of 6LiI see Breivogel, Hebert, et al., 1965. |
5 | Rot.-vibr. Sp. |
6 | Rotation spectrum |
7 | Mol. beam rf electric reson. 11 |
8 | Mol. beam magn. reson. 12 |
9 | Close agreement between several thermochemical values [ Brewer and Brackett, 1961; mass-spectrometry Friedman, 1955; flame-photometry Bulewicz, Phillips, et al., 1961] and the spectroscopic value of Beutler and Levi, 1934. |
10 | A broad single band appears at 28560 cm-1 in matrix absorption spectra Oppenheimer and Berry, 1971. |
11 | Dipole moments for 6LiI; μel(v=0,1) = 7.4285, 7.5120 D Breivogel, Hebert, et al., 1965. Hfs constants Breivogel, Hebert, et al., 1965,138; see also Honig, Mandel, et al., 1954 and Kusch, 1949, Logan, Cote, et al., 1952, Kusch, 1959. |
12 | gJ(7LiI) = (+)0.107 μN. Li NMR spectrum Kusch, 1949, Logan, Cote, et al., 1952, Kusch, 1959. |
13 | missing note |
References
Go To: Top, Condensed phase thermochemistry data, Constants of diatomic molecules, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Geiger and Pfeiffer, 1968
Geiger, J.; Pfeiffer, H.-C.,
Untersuchung der Anregung innerer Elektronen von Alkalihalogenidmolekulen im Energieverlustspektrum von 25 keV-Elektronen,
Z. Phys., 1968, 208, 105. [all data]
Berry and Klemperer, 1957
Berry, R.S.; Klemperer, W.,
Spectra of the alkali halides. III. Electronic spectra of lithium chloride, lithium bromide, and lithium iodide,
J. Chem. Phys., 1957, 26, 724. [all data]
Levi, 1934
Levi,
Dissertation, Berlin, 1934, 0. [all data]
Klemperer and Rice, 1957
Klemperer, W.; Rice, S.A.,
Infrared spectra of the alkali halides. I. Lithium halides,
J. Chem. Phys., 1957, 26, 618. [all data]
Klemperer, Norris, et al., 1960
Klemperer, W.; Norris, W.G.; Buchler, A.; Emslie, A.G.,
Infrared spectra of lithium halide monomers,
J. Chem. Phys., 1960, 33, 1534. [all data]
Honig, Mandel, et al., 1954
Honig, A.; Mandel, M.; Stitch, M.L.; Townes, C.H.,
Microwave spectra of the alkali halides,
Phys. Rev., 1954, 96, 629. [all data]
Rusk and Gordy, 1962
Rusk, J.R.; Gordy, W.,
Millimeter wave molecular beam spectroscopy: alkali bromides and iodides,
Phys. Rev., 1962, 127, 817. [all data]
Breivogel, Hebert, et al., 1965
Breivogel, F.W., Jr.; Hebert, A.J.; Street, K., Jr.,
Radio-frequency and microwave spectra of 6Li127I by the molecular-beam electric-resonance method,
J. Chem. Phys., 1965, 42, 1555. [all data]
Jacobson and Ramsey, 1976
Jacobson, A.R.; Ramsey, N.F.,
The hyperfine structure of 7Lil by molecular beam techniques,
J. Chem. Phys., 1976, 65, 1211. [all data]
Davidovits and Brodhead, 1967
Davidovits, P.; Brodhead, D.C.,
Ultraviolet absorption cross sections for the alkali halide vapors,
J. Chem. Phys., 1967, 46, 2968. [all data]
Oppenheimer and Berry, 1971
Oppenheimer, M.; Berry, R.S.,
Ultraviolet spectra of alkali halides in inert matrices,
J. Chem. Phys., 1971, 54, 5058. [all data]
Brewer and Brackett, 1961
Brewer, L.; Brackett, E.,
The dissociation energies of gaseous alkali halides,
Chem. Rev., 1961, 61, 425. [all data]
Friedman, 1955
Friedman, L.,
Mass spectrum of lithium iodide,
J. Chem. Phys., 1955, 23, 477. [all data]
Bulewicz, Phillips, et al., 1961
Bulewicz, E.M.; Phillips, L.F.; Sugden, T.M.,
Determination of dissociation constants and heats of formation of simple molecules by flame photometry. Part 8. Stabilities of the gaseous diatomic halides of certain metals,
Trans. Faraday Soc., 1961, 57, 921. [all data]
Beutler and Levi, 1934
Beutler, H.; Levi, H.,
Berechnung der dissoziationswarmen von gasformigem KC, KBr, KJ, NaCl, NaBr, NaJ und LiJ in die atome aus thermischen und optischen daten. (Anbang: die verdampfungswarme des kaliums und des lithiums),
Z. Phys. Chem. Abt. B, 1934, 24, 263. [all data]
Kusch, 1949
Kusch, P.,
On the nuclear electric quadrupole moment of Li6,
Phys. Rev., 1949, 75, 887. [all data]
Logan, Cote, et al., 1952
Logan, R.A.; Cote, R.E.; Kusch, P.,
The sign of the quadrupole interaction energy in diatomic molecules,
Phys. Rev., 1952, 86, 280. [all data]
Kusch, 1959
Kusch, P.,
Nuclear reorientation spectrum of Li7 in the gaseous monomers and dimers of the lithium halides,
J. Chem. Phys., 1959, 30, 52. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Constants of diatomic molecules, References
- Symbols used in this document:
S°liquid,1 bar Entropy of liquid at standard conditions (1 bar) S°solid Entropy of solid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.