Lithium fluoride
- Formula: FLi
- Molecular weight: 25.939
- IUPAC Standard InChIKey: PQXKHYXIUOZZFA-UHFFFAOYSA-M
- CAS Registry Number: 7789-24-4
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -143.08 | kcal/mol | Review | Chase, 1998 | Data last reviewed in December, 1968 |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid,1 bar | 10.27 | cal/mol*K | Review | Chase, 1998 | Data last reviewed in December, 1968 |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH°solid | -147.45 | kcal/mol | Review | Chase, 1998 | Data last reviewed in December, 1968 |
Quantity | Value | Units | Method | Reference | Comment |
S°solid | 8.540 | cal/mol*K | Review | Chase, 1998 | Data last reviewed in December, 1968 |
Liquid Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (cal/mol*K)
H° = standard enthalpy (kcal/mol)
S° = standard entropy (cal/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 1121.3 to 3000. |
---|---|
A | 15.34010 |
B | 1.002730×10-11 |
C | -5.502560×10-12 |
D | 9.379162×10-13 |
E | 2.749131×10-13 |
F | -147.6550 |
G | 28.83210 |
H | -143.0810 |
Reference | Chase, 1998 |
Comment | Data last reviewed in December, 1968 |
Solid Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (cal/mol*K)
H° = standard enthalpy (kcal/mol)
S° = standard entropy (cal/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 1121.3 |
---|---|
A | 9.980490 |
B | 4.472061 |
C | 0.165792 |
D | -0.237242 |
E | -0.116409 |
F | -151.0120 |
G | 18.62350 |
H | -147.4500 |
Reference | Chase, 1998 |
Comment | Data last reviewed in December, 1968 |
Constants of diatomic molecules
Go To: Top, Condensed phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Klaus P. Huber and Gerhard H. Herzberg
Data collected through January, 1977
Symbol | Meaning |
---|---|
State | electronic state and / or symmetry symbol |
Te | minimum electronic energy (cm-1) |
ωe | vibrational constant – first term (cm-1) |
ωexe | vibrational constant – second term (cm-1) |
ωeye | vibrational constant – third term (cm-1) |
Be | rotational constant in equilibrium position (cm-1) |
αe | rotational constant – first term (cm-1) |
γe | rotation-vibration interaction constant (cm-1) |
De | centrifugal distortion constant (cm-1) |
βe | rotational constant – first term, centrifugal force (cm-1) |
re | internuclear distance (Å) |
Trans. | observed transition(s) corresponding to electronic state |
ν00 | position of 0-0 band (units noted in table) |
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
K 3pπ 2Π | 510700 | 1420 1 | K ← X | 510900 | ||||||||
↳Radler, Sonntag, et al., 1976 | ||||||||||||
J 3σ 2Σ | 502200 | 1400 1 | J ← X | 502500 | ||||||||
↳Radler, Sonntag, et al., 1976 | ||||||||||||
I 2pπ 2Π | 477500 | 1240 1 | I ← X | 477600 | ||||||||
↳Radler, Sonntag, et al., 1976 | ||||||||||||
H 2σ 2Σ | 458600 | (1000) 1 | H ← X | 458600 | ||||||||
↳Radler, Sonntag, et al., 1976 | ||||||||||||
Peaks in the electron energy loss spectrum at 6.6, 8.7, 10.9, 62.0 eV. | ||||||||||||
↳Geiger and Pfeiffer, 1968 | ||||||||||||
Ab initio studies of the lowest 1Σ states (including the ground state), curve crossings Kahn and Hay, 1974 Botter, Kooter, et al., 1975 Yardley and Balint-Kurti, 1976. | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
X 1Σ+ | 0 | 910.34 2 Z | 7.929 2 | 1.3452576 | 0.0202868 3 | 1.1754E-5 | -0.0124E-5 | 1.563864 4 | ||||
↳Klemperer, Norris, et al., 1960; Vidale, 1960; Vasilevskii and Baikov, 1961 | ||||||||||||
Rotation sp. | ||||||||||||
↳Wharton, Klemperer, et al., 1963; Veazey and Gordy, 1965; Pearson and Gordy, 1969; Cupp, Smith, et al., 1973 | ||||||||||||
Mol. beam rf electric reson. 5 | ||||||||||||
↳Wharton, Klemperer, et al., 1963; Hebert, Lovas, et al., 1968; Mariella, Herschbach, et al., 1973; Hebert and Hollowell, 1976 | ||||||||||||
Mol. beam magn. reson. 6 | ||||||||||||
↳Mehran, Brooks, et al., 1966 |
Notes
1 | First members of two Rydberg series converging to the Li is ionization limit of LiF at 65.5 eV (528300 cm-1); vibrational numbering not established. |
2 | From the infrared spectrum [constants corresponding to the J numbering "Morig - 2" in table III of Vidale, 1960]. In good agreement with constants calculated from the microwave results: we = 910.25, wexe = 8.10. |
3 | +0.0001558(v+1/2)2 - 3.5E-7(v+1/2)3. |
4 | Rotation-vibr. Sp. 8 |
5 | Dipole moment of 7LiF: μel[D] = 6.2839 + 0.08153(v+1/2) + 0.000445(v+1/2)2,v = 0,1,2 Hebert and Hollowell, 1976; see also Wharton, Klemperer, et al., 1963, Hebert, Lovas, et al., 1968, Mariella, Herschbach, et al., 1973. For electric quadrupole and other hyperfine coupling constants see Cupp, Smith, et al., 1973, Hebert and Hollowell, 1976. Earlier electric resonance work in Swartz and Trischka, 1952, Braunstein and Trischka, 1955, Kastner, Russell, et al., 1955, Moran and Trischka, 1961 and Russell, 1958 who found gJ(7LiF)= +0.0642 μN from the Zeeman splitting of the hyperfine structure; see also 6. |
6 | gJ(7LiF) = (+)0.0737 μN by the magnetic resonance method Mehran, Brooks, et al., 1966; see also Russell, 1958. Li NMR spectrum Kusch, 1949, Kusch, 1959. |
7 | Thermochemical value Pugh and Barrow, 1958, Brewer and Brackett, 1961, Bulewicz, Phillips, et al., 1961, Hildenbrand, Hall, et al., 1964. |
8 | For IR frequencies in inert gas matrices see Linevsky, 1961, Snelson and Pitzer, 1963, Schlick and Schnepp, 1964, Snelson, 1967. The lifetime of the lowest vibrationally excited level of 6LiF. τ(v=1) = 14.3 ms, was determined by Bedding and Moran, 1974 using the molecular beam electric resonance method. |
References
Go To: Top, Condensed phase thermochemistry data, Constants of diatomic molecules, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Radler, Sonntag, et al., 1976
Radler, K.; Sonntag, B.; Chang, T.C.; Schwarz, W.H.E.,
Experimental and theoretical investigation of the Li 1s spectra of molecular lithium halides,
Chem. Phys., 1976, 13, 363. [all data]
Geiger and Pfeiffer, 1968
Geiger, J.; Pfeiffer, H.-C.,
Untersuchung der Anregung innerer Elektronen von Alkalihalogenidmolekulen im Energieverlustspektrum von 25 keV-Elektronen,
Z. Phys., 1968, 208, 105. [all data]
Kahn and Hay, 1974
Kahn, L.R.; Hay, P.J.,
Theoretical study of curve crossing: ab initio calculations on the four lowest 1Σ+ states of LiF,
J. Chem. Phys., 1974, 61, 3530. [all data]
Botter, Kooter, et al., 1975
Botter, B.J.; Kooter, J.A.; Mulder, J.J.C.,
Ab-initio calculations of the covalent-ionic curve crossing in LiF,
Chem. Phys. Lett., 1975, 33, 532. [all data]
Yardley and Balint-Kurti, 1976
Yardley, R.N.; Balint-Kurti, G.G.,
Ab initio valence-bond calculations on HF, LiH, LiH+ and LiF,
Mol. Phys., 1976, 31, 921. [all data]
Klemperer, Norris, et al., 1960
Klemperer, W.; Norris, W.G.; Buchler, A.; Emslie, A.G.,
Infrared spectra of lithium halide monomers,
J. Chem. Phys., 1960, 33, 1534. [all data]
Vidale, 1960
Vidale, G.L.,
The infrared spectrum of the gaseous lithium fluoride (LiF) molecule,
J. Phys. Chem., 1960, 64, 314. [all data]
Vasilevskii and Baikov, 1961
Vasilevskii, K.P.; Baikov, V.I.,
The infrared spectrum of lithium vapor,
Opt. Spectrosc. Engl. Transl., 1961, 11, 21, In original 41. [all data]
Wharton, Klemperer, et al., 1963
Wharton, L.; Klemperer, W.; Gold, L.P.; Strauch, R.; Gallagher, J.J.; Derr, V.E.,
Microwave spectrum, spectroscopic constants, and electric dipole moment of Li6F19,
J. Chem. Phys., 1963, 38, 1203. [all data]
Veazey and Gordy, 1965
Veazey, S.E.; Gordy, W.,
Millimeter-wave molecular-beam spectroscopy: alkali fluorides,
Phys. Rev. A: Gen. Phys., 1965, 138, 1303. [all data]
Pearson and Gordy, 1969
Pearson, E.F.; Gordy, W.,
Millimeter- and submillimeter-wave spectra and molecular constants of LiF and LiCl,
Phys. Rev., 1969, 177, 52. [all data]
Cupp, Smith, et al., 1973
Cupp, R.E.; Smith, W.T.; Contini, D.A.; Woods, D.; Gallagher, J.J.,
Partial resolution of 6Li19F rotational transition,
Phys. Lett. A, 1973, 44, 305. [all data]
Hebert, Lovas, et al., 1968
Hebert, A.J.; Lovas, F.J.; Melendres, C.A.; Hollowell, C.D.; Story, T.L., Jr.; Street, K., Jr.,
Dipole moments of some alkali halide molecules by the molecular beam electric resonance method,
J. Chem. Phys., 1968, 48, 2824. [all data]
Mariella, Herschbach, et al., 1973
Mariella, R.P., Jr.; Herschbach, D.R.; Klemperer, W.,
Molecular beam electric resonance spectra of reaction products: vibrational energy of LiF from Li+SF6,
J. Chem. Phys., 1973, 58, 3785. [all data]
Hebert and Hollowell, 1976
Hebert, A.J.; Hollowell, C.D.,
The radiofrequency spectra of LiF by the molecular beam electric resonance method,
J. Chem. Phys., 1976, 65, 4327. [all data]
Mehran, Brooks, et al., 1966
Mehran, F.; Brooks, R.A.; Ramsey, N.F.,
Rotational magnetic moments of alkali-halide molecules,
Phys. Rev., 1966, 141, 93. [all data]
Swartz and Trischka, 1952
Swartz, J.C.; Trischka, J.W.,
Radiofrequency spectra of Li6F19 by the molecular beam electric resonance method,
Phys. Rev., 1952, 88, 1085. [all data]
Braunstein and Trischka, 1955
Braunstein, R.; Trischka, J.W.,
Molecular constants and nuclear-molecular interactions of Li7F19 by the molecular beam electric resonance method,
Phys. Rev., 1955, 98, 1092. [all data]
Kastner, Russell, et al., 1955
Kastner, S.O.; Russell, A.M.; Trischka, J.W.,
Variation with vibration of the fluorine spin-rotation interaction in Li6F,
J. Chem. Phys., 1955, 23, 1730. [all data]
Moran and Trischka, 1961
Moran, T.I.; Trischka, J.W.,
New determinations of the vibrational constants of Li-Li6F and Li6Cl35 by the molecular beam electric resonance method,
J. Chem. Phys., 1961, 34, 923. [all data]
Russell, 1958
Russell, A.M.,
Magnetic moments due to rotation in Li6F and Li7F,
Phys. Rev., 1958, 111, 1558. [all data]
Kusch, 1949
Kusch, P.,
On the nuclear electric quadrupole moment of Li6,
Phys. Rev., 1949, 75, 887. [all data]
Kusch, 1959
Kusch, P.,
Nuclear reorientation spectrum of Li7 in the gaseous monomers and dimers of the lithium halides,
J. Chem. Phys., 1959, 30, 52. [all data]
Pugh and Barrow, 1958
Pugh, A.C.P.; Barrow, R.F.,
The heats of sublimation of inorganic substances. Part 5. The alkali metal fluorides,
Trans. Faraday Soc., 1958, 54, 671. [all data]
Brewer and Brackett, 1961
Brewer, L.; Brackett, E.,
The dissociation energies of gaseous alkali halides,
Chem. Rev., 1961, 61, 425. [all data]
Bulewicz, Phillips, et al., 1961
Bulewicz, E.M.; Phillips, L.F.; Sugden, T.M.,
Determination of dissociation constants and heats of formation of simple molecules by flame photometry. Part 8. Stabilities of the gaseous diatomic halides of certain metals,
Trans. Faraday Soc., 1961, 57, 921. [all data]
Hildenbrand, Hall, et al., 1964
Hildenbrand, D.L.; Hall, W.F.; Ju, F.; Potter, N.D.,
Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides,
J. Chem. Phys., 1964, 40, 2882. [all data]
Linevsky, 1961
Linevsky, M.J.,
Infrared spectrum of lithium fluoride monomer by matrix isolation,
J. Chem. Phys., 1961, 34, 587. [all data]
Snelson and Pitzer, 1963
Snelson, A.; Pitzer, K.S.,
Infrared spectra by matrix isolation of lithium fluoride, lithium chloride and sodium fluoride,
J. Phys. Chem., 1963, 67, 882. [all data]
Schlick and Schnepp, 1964
Schlick, S.; Schnepp, O.,
Infrared spectra of the lithium halide monomers and dimers in inert matrices at low temperature,
J. Chem. Phys., 1964, 41, 463. [all data]
Snelson, 1967
Snelson, A.,
Infrared spectrum of LiF, Li2F2, and Li3F3 by matrix isolation,
J. Chem. Phys., 1967, 46, 3652. [all data]
Bedding and Moran, 1974
Bedding, D.R.; Moran, T.I.,
Vibrational-state lifetime of 6LiF,
Phys. Rev. A: Gen. Phys., 1974, 9, 2324. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Constants of diatomic molecules, References
- Symbols used in this document:
S°liquid,1 bar Entropy of liquid at standard conditions (1 bar) S°solid Entropy of solid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.