Ethane
- Formula: C2H6
- Molecular weight: 30.0690
- IUPAC Standard InChIKey: OTMSDBZUPAUEDD-UHFFFAOYSA-N
- CAS Registry Number: 74-84-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Species with the same structure:
- Isotopologues:
- Other names: Bimethyl; Dimethyl; Ethyl hydride; Methylmethane; C2H6; UN 1035; UN 1961
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -84. ± 0.4 | kJ/mol | Review | Manion, 2002 | adopted recommendation of Gurvich, Veyts, et al., 1991; DRB |
ΔfH°gas | -83.8 ± 0.3 | kJ/mol | Ccb | Pittam and Pilcher, 1972 | ALS |
ΔfH°gas | -84.67 ± 0.49 | kJ/mol | Ccb | Prosen and Rossini, 1945 | Hf derived from Heat of Hydrogenation; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°gas | -1560.7 ± 0.3 | kJ/mol | Ccb | Pittam and Pilcher, 1972 | Corresponding ΔfHºgas = -83.85 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°gas | -1559.9 ± 0.46 | kJ/mol | Ccb | Prosen and Rossini, 1945 | Hf derived from Heat of Hydrogenation; Corresponding ΔfHºgas = -84.64 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°gas | -1559.8 ± 0.46 | kJ/mol | Ccb | Rossini, 1934 | Corresponding ΔfHºgas = -84.68 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
35.70 | 100. | Gurvich, Veyts, et al., 1989 | p=1 bar. Recommended entropies and heat capacities are in good agreement with those obtained from other statistical thermodynamic calculations [ Pitzer K.S., 1944, Chao J., 1973, Pamidimukkala K.M., 1982].; GT |
42.30 | 200. | ||
52.49 | 298.15 | ||
52.71 | 300. | ||
65.46 | 400. | ||
77.94 | 500. | ||
89.19 | 600. | ||
99.14 | 700. | ||
107.94 | 800. | ||
115.71 | 900. | ||
122.55 | 1000. | ||
128.55 | 1100. | ||
133.80 | 1200. | ||
138.39 | 1300. | ||
142.40 | 1400. | ||
145.90 | 1500. | ||
148.98 | 1600. | ||
151.67 | 1700. | ||
154.04 | 1800. | ||
156.14 | 1900. | ||
158.00 | 2000. | ||
159.65 | 2100. | ||
161.12 | 2200. | ||
162.43 | 2300. | ||
163.61 | 2400. | ||
164.67 | 2500. | ||
165.63 | 2600. | ||
166.49 | 2700. | ||
167.28 | 2800. | ||
168.00 | 2900. | ||
168.65 | 3000. |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
41.66 ± 0.31 | 189.20 | Halford J.O., 1957 | Please also see Eucken A., 1933, Kistiakowsky G.B., 1939, Dailey B.P., 1943.; GT |
43.25 ± 0.32 | 209.30 | ||
45.08 ± 0.34 | 229.65 | ||
47.27 ± 0.35 | 249.90 | ||
47.17 ± 0.35 | 250.15 | ||
49.68 ± 0.37 | 272.00 | ||
49.51 ± 0.04 | 272.07 | ||
50.66 ± 0.42 | 279.00 | ||
52.14 ± 0.39 | 292.00 | ||
53.27 ± 0.07 | 302.70 | ||
57.40 ± 0.04 | 335.82 | ||
58.91 | 347.65 | ||
60.38 | 359.75 | ||
61.04 ± 0.10 | 364.78 | ||
62.10 ± 0.47 | 373.60 | ||
63.89 | 387.55 | ||
72.43 | 451.95 | ||
80.08 | 520.55 | ||
86.27 | 561.65 | ||
90.46 | 603.25 |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Vibrational and/or electronic energy levels, References, Notes
Data compiled by: Coblentz Society, Inc.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Vibrational and/or electronic energy levels
Go To: Top, Gas phase thermochemistry data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Takehiko Shimanouchi
Symmetry: D3d Symmetry Number σ = 6
Sym. | No | Approximate | Selected Freq. | Infrared | Raman | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
Species | type of mode | Value | Rating | Value | Phase | Value | Phase | |||
a1g | 1 | CH3 s-str | 2954 | B | ia | 2953.7 | gas | |||
a1g | 2 | CH3 s-deform | 1388 | B | ia | 1388.4 | gas | |||
a1g | 3 | CC str | 995 | A | ia | 994.8 | gas | |||
a1u | 4 | Torsion | 289 | B | 289 | gas | ia | |||
a2u | 5 | CH3 s-str | 2896 | B | 2895.8 | gas | ia | |||
a2u | 6 | CH3 s-deform | 1379 | A | 1379.2 | gas | ia | |||
eg | 7 | CH3 d-str | 2969 | A | ia | 2968.7 | gas | |||
eg | 8 | CH3 d-deform | 1468 | A | ia | 1468.1 | gas | |||
eg | 9 | CH3 rock | 1190 | E | ia | OC | ||||
eu | 10 | CH3 d-str | 2985 | A | 2985.4 | gas | ia | |||
eu | 11 | CH3 d-deform | 1469 | C | 1469 | gas | ia | FR(ν4+ν12) | ||
eu | 12 | CH3 rock | 822 | A | 821.6 | gas | ia | |||
Source: Shimanouchi, 1972
Notes
ia | Inactive |
FR | Fermi resonance with an overtone or a combination tone indicated in the parentheses. |
OC | Frequency estimated from an overtone or a combination tone indicated in the parentheses. |
A | 0~1 cm-1 uncertainty |
B | 1~3 cm-1 uncertainty |
C | 3~6 cm-1 uncertainty |
E | 15~30 cm-1 uncertainty |
References
Go To: Top, Gas phase thermochemistry data, IR Spectrum, Vibrational and/or electronic energy levels, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Manion, 2002
Manion, J.A.,
Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons,
J. Phys. Chem. Ref. Data, 2002, 31, 1, 123-172, https://doi.org/10.1063/1.1420703
. [all data]
Gurvich, Veyts, et al., 1991
Thermodynamic Properties of Individual Substances, 4th edition, Volume 2, Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.;, ed(s)., Hemisphere, New York, 1991. [all data]
Pittam and Pilcher, 1972
Pittam, D.A.; Pilcher, G.,
Measurements of heats of combustion by flame calorimetry. Part 8.-Methane, ethane, propane, n-butane and 2-methylpropane,
J. Chem. Soc. Faraday Trans. 1, 1972, 68, 2224-2229. [all data]
Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D.,
Heats of combustion and formation of the paraffin hydrocarbons at 25° C,
J. Res. NBS, 1945, 263-267. [all data]
Rossini, 1934
Rossini, F.D.,
Calorimetric determination of the heats of combustion of ethane, propane, normal butane, and normal pentane,
J. Res. NBS, 1934, 12, 735-750. [all data]
Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.,
Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]
Pitzer K.S., 1944
Pitzer K.S.,
Thermodynamics of gaseous paraffins. Specific heat and related properties,
Ind. Eng. Chem., 1944, 36, 829-831. [all data]
Chao J., 1973
Chao J.,
Ideal gas thermodynamic properties of ethane and propane,
J. Phys. Chem. Ref. Data, 1973, 2, 427-438. [all data]
Pamidimukkala K.M., 1982
Pamidimukkala K.M.,
Ideal gas thermodynamic properties of CH3, CD3, CD4, C2D2, C2D4, C2D6, C2H6, CH3N2CH3, and CD3N2CD3,
J. Phys. Chem. Ref. Data, 1982, 11, 83-99. [all data]
Halford J.O., 1957
Halford J.O.,
Standard heat capacities of gaseous methanol, ethanol, methane and ethane at 279 K by thermal conductivity,
J. Phys. Chem., 1957, 61, 1536-1539. [all data]
Eucken A., 1933
Eucken A.,
Molar heats and normal frequencies of ethane and ethylene,
Z. Phys. Chem., 1933, B20, 184-194. [all data]
Kistiakowsky G.B., 1939
Kistiakowsky G.B.,
Gaseous heat capacities. I. The method and the heat capacities of C2H6 and C2D6,
J. Chem. Phys., 1939, 7, 281-288. [all data]
Dailey B.P., 1943
Dailey B.P.,
The heat capacities at higher temperatures of ethane and propane,
J. Am. Chem. Soc., 1943, 65, 42-44. [all data]
Shimanouchi, 1972
Shimanouchi, T.,
Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, IR Spectrum, Vibrational and/or electronic energy levels, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas ΔcH°gas Enthalpy of combustion of gas at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.