Bromine
- Formula: Br2
- Molecular weight: 159.808
- IUPAC Standard InChIKey: GDTBXPJZTBHREO-UHFFFAOYSA-N
- CAS Registry Number: 7726-95-6
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Br2; Brom; Brome; Bromo; Broom; UN 1744; Dibromine
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 30.91 ± 0.11 | kJ/mol | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
ΔfH°gas | 30.91 | kJ/mol | Review | Chase, 1998 | Data last reviewed in June, 1982 |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 245.468 ± 0.005 | J/mol*K | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
S°gas,1 bar | 245.38 | J/mol*K | Review | Chase, 1998 | Data last reviewed in June, 1982 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 332.503 to 3400. | 3400. to 6000. |
---|---|---|
A | 38.52723 | 34.99288 |
B | -1.976835 | 9.252248 |
C | 1.526107 | -2.361588 |
D | -0.198398 | 0.154336 |
E | -0.185815 | -43.07637 |
F | 18.87620 | -7.467771 |
G | 291.4863 | 273.6303 |
H | 30.91001 | 30.91001 |
Reference | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in June, 1982 | Data last reviewed in June, 1982 |
Constants of diatomic molecules
Go To: Top, Gas phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Klaus P. Huber and Gerhard H. Herzberg
Data collected through September, 1976
Symbol | Meaning |
---|---|
State | electronic state and / or symmetry symbol |
Te | minimum electronic energy (cm-1) |
ωe | vibrational constant – first term (cm-1) |
ωexe | vibrational constant – second term (cm-1) |
ωeye | vibrational constant – third term (cm-1) |
Be | rotational constant in equilibrium position (cm-1) |
αe | rotational constant – first term (cm-1) |
γe | rotation-vibration interaction constant (cm-1) |
De | centrifugal distortion constant (cm-1) |
βe | rotational constant – first term, centrifugal force (cm-1) |
re | internuclear distance (Å) |
Trans. | observed transition(s) corresponding to electronic state |
ν00 | position of 0-0 band (units noted in table) |
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rydberg | Fragments of additional Rydberg series converging to A 2Πu of Br2+. | |||||||||||
↳missing citation | ||||||||||||
Rydberg series converging to X2 2Πg,3/2 of Br2+ : ν = 88306 1 - R/(n-δ)2 , δ = 2.416, 2.446, 2.591, 2.629, n = 5,6,7. | ||||||||||||
↳missing citation | ||||||||||||
Rydberg series converging to X1 2Πg,3/2 of Br2+ : ν = 85165 2 - R/(n-1.843)2 ,n=5,...,12. | ||||||||||||
↳missing citation | ||||||||||||
Rydberg series converging to X1 2Πg,3/2 of Br2+ : ν = 85165 2 - R/(n-1.938)2 ,n=5,...,18. | ||||||||||||
↳missing citation | ||||||||||||
Rydberg series converging to X1 2Πg,3/2 of Br2+ : ν = 85165 2 - R/(n-δ)2 , δ = 2.225, 2.422, 2.593, n = 5,...,20. | ||||||||||||
↳missing citation | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
N | 76537 | 230 3 | N ← X R | 76491 H | ||||||||
↳missing citation | ||||||||||||
M | 74060 | 241 3 H | (0.3) | M ← X R | 74019 H | |||||||
↳missing citation | ||||||||||||
L | 72727 | 218 3 H | 3 | L ← X R | 72674 H | |||||||
↳missing citation | ||||||||||||
Several groups of diffuse emission bands in the region 23600 - 50000 cm-1 have been assigned Venkateswarlu, 1947 to transitions from four states at 47000, 55534, 61444, 66500 cm-1 to various repulsive states arising from Br(2P3/2,1/2) + Br(2P3/2,1/2) . | ||||||||||||
↳Venkateswarlu, 1947 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
(K ) 4 | (K) ← X | |||||||||||
↳Venkateswarlu, 1969 | ||||||||||||
(K) | 293 3 5 | l → X R | 62266 H | |||||||||
↳Haranath and Rao, 1958 | ||||||||||||
(K ) | 426 3 5 | M → X V | 60879 H | |||||||||
↳Haranath and Rao, 1958 | ||||||||||||
(K) | 281 3 5 | L → X R | 59855 H | |||||||||
↳Haranath and Rao, 1958 | ||||||||||||
6 | ||||||||||||
↳Rao and Venkateswarlu, 1964 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
H | (56820) | 108 3 7 | 1.5 | H → B | (40890) 7 | |||||||
↳Verma, 1958 | ||||||||||||
G | 56337 | (255) $eH | G → X $gR | 56303 H | ||||||||
↳Haranath and Rao, 1958 | ||||||||||||
F | 52191 | (120) 3 H | F → X 8 R | 52090 H | ||||||||
↳Haranath and Rao, 1958 | ||||||||||||
E | 51634.0 | 150.9 3 | 0.495 9 | E ↔ B 10 | 35724 3 | |||||||
↳Venkateswarlu and Verma, 1958; missing citation; Wieland, Tellinghuisen, et al., 1972 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
D | 48499 | 162 3 | 0.29 | D → B | 32595 | |||||||
↳Venkateswarlu and Verma, 1958, 2 | ||||||||||||
C 1Πu 1u | (24000) 11 | C 12 ← X | (24000) | |||||||||
↳Cordes and Sponer, 1930; Aickin and Bayliss, 1938; Mulliken, 1940; Rees, 1947; Bayliss and Sullivan, 1954; Coxon, 1973 | ||||||||||||
B 3Πu 0u+ | 15902.47 | 167.607 Z | 1.6361 13 | -0.009369 | 0.059589 14 15 16 | 0.0004891 | 3.013E-08 17 | 2.67757 | B ↔ X 12 18 16 R | 15823.47 Z | ||
↳missing citation; missing citation; Holzer, Murphy, et al., 1970; Barrow, Clark, et al., 1974; Ault, Howard, et al., 1975 | ||||||||||||
A 3Πu 1u | 13905 | 153 3 H | 2.7 19 | 0.0588 20 21 | (0.0008) | 2.695 | A ↔ X 12 18 21 R | 13818 22 | ||||
↳Horsley, 1967; missing citation; Coxon, 1972 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
X 1Σg+ | 0 | 325.321 Z | 1.0774 | -0.002298 | 0.082107 23 | 0.0003187 | -0.000001045 | 2.092E-08 17 | 2.28105 24 |
Notes
1 | The interval of 3141 cm-1 between X1 2Π3/2 and X2 2Π1/2 of Br2+ derived from the Rydberg series does not agree with the value 2820 cm-1 from the photoelectron spectrum Cornford, Frost, et al., 1971. The discrepancy may be accounted for by assuming that instead of v'=0 as suggested in Venkateswarlu, 1969 the 2Π1/2 series listed here have v'=2 while the 2Π3/2 series have v'=1 (see 2). |
2 | According to the photoionization and photoelectron value of the ionization potential (see 26) the five 2Π3/2 Rydberg series in the table refer to v'=l. Vibrational structure; see Venkateswarlu, 1969. |
3 | Normal isotopic mixture. |
4 | Extensive system of absorption bands in the region 59000 - 67000 cm-1; no analysis. This system may include transitions to the upper states of: |
5 | a) emission systems of Haranath and Rao, 1958 |
6 | b) a long resonance series (63817 - 53779 cm-1). |
7 | The vibrational analysis is doubtful since only v"=21-32 were observed. v00 (extrapolated) and Te are different from Verma, 1958 to allow for the new data on the B state Barrow, Clark, et al., 1974. |
8 | System H-X of Haranath and Rao, 1958, not observed in absorption. |
9 | ωeze= +0.000065; vibrational constants from the reanalysis Wieland, Tellinghuisen, et al., 1972 of the emission data of Venkateswarlu and Verma, 1958 and the absorption data of Briggs and Norrish, 1963. See 10 . |
10 | It is not entirely certain that the lower state is B 3Πu,0+ and not A 3Πu,1. |
11 | Several absorption continua beyond 19580 cm-1 corresponding to a number of electronic transitions including that to C 1Πu with maximum at 24000 cm-1. |
12 | Also observed in magnetic circular dichroism Brith, Rowe, et al., 1975 and photofragment Oldman, Sander, et al., 1975 spectra. The latter authors confirm Mulliken's Mulliken, 1940 prediction that C 1Πu dissociates into 2Π3/2 + 2Π3/2 and observe evidence for several excited g states by two-photon photofragment studies near 28000 and 38000 cm-1. |
13 | (for v≤8). Vibrational levels observed to v=55, dissociation limit (2P3/2+2P1/2) at 19579.76 cm-1 above X 1Σg+(v=0,J=0). See 16. Absorption in the B 0u+ continuum Bondybey, Bearder, et al., 1976. |
14 | Hfs observed in v=12 (81Br2) and v=17(79Br2); see Eng and LaTourrette, 1974. |
15 | Predissociation was observed Lum and McAfee, 1975, Lum and Hozack, 1975 for v=42, J=33 by the laser-molecular beam technique. B → X emitted in the recombination of Br(2P3/2) atoms shows strong enhancement of bands with 5<v'< 10 presumably on account of inverse predissociation Clyne, Coxon, et al., 1971. See also 18. |
16 | RKR potential function and Franck-Condon factors Coxon, 1971, Barrow, Clark, et al., 1974. For the behavior of the potential function near the dissociation limit 13 see Goscinski, 1972, Yee and Stone, 1973, LeRoy, 1974. |
17 | Dv and higher order constants in Barrow, Clark, et al., 1974. |
18 | Estimated radiative lifetimes for A and B range from 1000 to 2000 and 12 to 70 μs, respectively Coxon, 1972, Coxon, 1973, Bondybey, Bearder, et al., 1976. For the B state Capelle, Sakurai, et al., 1971 find total lifetimes of the order of 1 μs; minima (~0.2 μs) occur for v=1 and 14 probably on account of predissociation. For lifetimes near the dissociation limit 13 of B see McAfee and Hozack, 1976. |
19 | Convergence limit for 79Br2 at 15894.6 cm-1 above X 1Σg+ (v=0,J=0), corresponding to 2P3/2 + 2P3/2. A weak continuous spectrum joins onto the limit and overlaps the main absorption system B ← X; see Sulzmann, Bien, et al., 1967. |
20 | Extrapolated from v=7; constants for v=0.. .6 have not been determined. Bv, Dv, Hv, and Λ-type doubling constants for v=7...24 in Coxon, 1972. |
21 | RKR potential function and Franck-Condon factors Coxon, 1972. |
22 | Based on ΔG'(v=0-7) from low-resolution emission spectra Clyne and Coxon, 1967 of normal Br2 and the origin of the 7-0 79Br2 band at 14739.14 cm-1 derived from Coxon, 1972 and Barrow, Clark, et al., 1974. |
23 | RKR potential curve Coxon, 1971, Barrow, Clark, et al., 1974. Hfs observed Eng and LaTourrette, 1974 in v=4 (81Br2) and v=7 (79Br2). |
24 | Raman sp. 29 |
25 | From Barrow, Clark, et al., 1974; corresponding values for 79,81Br2 and 81Br2 are 1.97082 and 1.97095 eV (short extrapolation of B 0u+) |
26 | From photoionization Dibeler, Walker, et al., 1970; supported by measurements at different temperatures. In good agreement with 10.51 eV obtained by photoelectron spectroscopy Frost, McDowell, et al., 1967, Cornford, Frost, et al., 1971, Potts and Price, 1971. A slightly higher value, 10.56 eV, was derived Venkateswarlu, 1969 from the Rydberg series in the VUV. It is probable that this value refers to v'=1. |
27 | System J-X of Haranath and Rao, 1958, not observed in absorption. |
28 | (valid for v≤8). |
29 | Resonance Raman spectra in the gas Holzer, Murphy, et al., 1970, 2, Baierl and Kiefer, 1975, in solid argon Ault, Howard, et al., 1975; pure rotational Raman spectrum Baierl, Hochenbleicher, et al., 1975. |
References
Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A.,
CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Venkateswarlu, 1947
Venkateswarlu, P.,
Emission bands of halogens. Part IV. Diffuse bands of bromine,
Proc. Indian Acad. Sci. Sect. A, 1947, 25, 138. [all data]
Venkateswarlu, 1969
Venkateswarlu, P.,
The vacuum ultraviolet spectrum of the bromine molecule,
Can. J. Phys., 1969, 47, 2525. [all data]
Haranath and Rao, 1958
Haranath, P.B.V.; Rao, P.T.,
Band spectra of iodine, chlorine, and bromine in the spectral region 2400-1400 A,
J. Mol. Spectrosc., 1958, 2, 428. [all data]
Rao and Venkateswarlu, 1964
Rao, Y.V.; Venkateswarlu, P.,
Vacuum ultraviolet resonance spectrum of Br2 molecule,
J. Mol. Spectrosc., 1964, 13, 288. [all data]
Verma, 1958
Verma, R.D.,
Emission spectrum of bromine excited in the presence of argon. Part III. The band system in the region 2660-2590 Å,
Proc. Indian Acad. Sci. Sect. A, 1958, 47, 196. [all data]
Venkateswarlu and Verma, 1958
Venkateswarlu, P.; Verma, R.D.,
Emission spectrum of bromine excited in the presence of argon-Part I,
Proc. Indian Acad. Sci. Sect. A, 1958, 46, 251. [all data]
Wieland, Tellinghuisen, et al., 1972
Wieland, K.; Tellinghuisen, J.B.; Nobs, A.,
The band systems E → B(4000-4360 Å) and F → X(2530-2740 Å) of 127I2 and 129I2, and the corresponding system E = B of Br2 and Cl2,
J. Mol. Spectrosc., 1972, 41, 69. [all data]
Venkateswarlu and Verma, 1958, 2
Venkateswarlu, P.; Verma, R.D.,
Emission spectrum of bromine excited in the presence of argon. Part II. The band system in the region 3150-2970 Å,
Proc. Indian Acad. Sci. Sect. A, 1958, 46, 416. [all data]
Cordes and Sponer, 1930
Cordes, H.; Sponer, H.,
Die molekulabsorption des chlors, broms, jodchlorids und jodbromids im aubersten ultraviolett,
Z. Phys., 1930, 63, 334. [all data]
Aickin and Bayliss, 1938
Aickin, R.G.; Bayliss, N.S.,
The absorption spectrum of bromine vapour in the region 3400 A to 2200 A,
Trans. Faraday Soc., 1938, 34, 1371. [all data]
Mulliken, 1940
Mulliken, R.S.,
Halogen molecule spectra. II. Interval relations and relative intensities in the long wave-length spectra,
Phys. Rev., 1940, 57, 500. [all data]
Rees, 1947
Rees, A.L.G.,
Note on the interpretation of the visible absorption spectrum of bromine,
Proc. Phys. Soc. London, 1947, 59, 1008. [all data]
Bayliss and Sullivan, 1954
Bayliss, N.S.; Sullivan, J.V.,
Vacuum ultraviolet absorption spectra of iodine and bromine,
J. Chem. Phys., 1954, 22, 1615. [all data]
Coxon, 1973
Coxon, J.A.,
Chapt. 4. Low-lying electronic states of diatomic halogen molecules
in Molecular Spectroscopy. Volume 1, Barrow,R.F.; Long,D.A.; Millen,D.J., ed(s)., The Chemical Society, Burlington House, London, W1V 0BN, 1973, 177-228. [all data]
Holzer, Murphy, et al., 1970
Holzer, W.; Murphy, W.F.; Bernstein, H.J.,
Resonance fluorescence of iodine, bromine, and chlorine gases obtained with argon-ion laser excitation,
J. Chem. Phys., 1970, 52, 469. [all data]
Barrow, Clark, et al., 1974
Barrow, R.F.; Clark, T.C.; Coxon, J.A.; Yee, K.K.,
The B3Π0u+ - X1Σg+ system of Br2 rotational analysis, Franck-Condon factors, and long range potential in the B0u+ state,
J. Mol. Spectrosc., 1974, 51, 428. [all data]
Ault, Howard, et al., 1975
Ault, B.S.; Howard, W.F.; Andrews, L.,
Laser-induced fluorescence and Raman spectra of chlorine and bromine molecules isolated in inert matrices,
J. Mol. Spectrosc., 1975, 55, 217. [all data]
Horsley, 1967
Horsley, J.A.,
Rotational analysis of the A3Π1u - X1Σg+ system of bromine,
J. Mol. Spectrosc., 1967, 22, 469. [all data]
Coxon, 1972
Coxon, J.A.,
The extreme red absorption spectrum of Br2, A3Π(1u) ← X1Σg+,
J. Mol. Spectrosc., 1972, 41, 548. [all data]
Cornford, Frost, et al., 1971
Cornford, A.B.; Frost, D.C.; McDowell, C.A.; Ragle, J.L.; Stenhouse, I.A.,
Photoelectron spectra of the halogens,
J. Chem. Phys., 1971, 54, 2651. [all data]
Briggs and Norrish, 1963
Briggs, A.G.; Norrish, R.G.W.,
Transient absorption spectra of chlorine and bromine,
Proc. R. Soc. London A, 1963, 276, 51. [all data]
Brith, Rowe, et al., 1975
Brith, M.; Rowe, M.D.; Schnepp, O.; Stephens, P.J.,
The magnetic circular dichroism spectrum of the halogen molecules I2, Br2, Cl2. Resolution of overlapping continua,
Chem. Phys., 1975, 9, 57. [all data]
Oldman, Sander, et al., 1975
Oldman, R.J.; Sander, R.K.; Wilson, K.R.,
Photofragment spectrum of bromine,
J. Chem. Phys., 1975, 63, 4252. [all data]
Bondybey, Bearder, et al., 1976
Bondybey, V.E.; Bearder, S.S.; Fletcher, C.,
Br2B3Π(0u+) excitation spectra and radiative lifetimes in rare gas solids,
J. Chem. Phys., 1976, 64, 5243. [all data]
Eng and LaTourrette, 1974
Eng, R.S.; LaTourrette, J.T.,
Hyperfine spectra of bromine vapor near 633 nm,
J. Mol. Spectrosc., 1974, 52, 269. [all data]
Lum and McAfee, 1975
Lum, R.M.; McAfee, K.B., Jr.,
Direct measurement of spontaneous predissociation using coaxial laser-molecular beams,
J. Chem. Phys., 1975, 63, 5029. [all data]
Lum and Hozack, 1975
Lum, R.M.; Hozack, R.S.,
Identification of selectively excited transitions in Br2 isotopes at 5145 Å,
J. Mol. Spectrosc., 1975, 58, 325-327. [all data]
Clyne, Coxon, et al., 1971
Clyne, M.A.A.; Coxon, J.A.; Woon-Fat, A.R.,
Electronic excitation of bromine to the B3Π(0u+) state in the recombination of ground state Br2P2/3 atoms,
Trans. Faraday Soc., 1971, 67, 3155. [all data]
Coxon, 1971
Coxon, J.A.,
The calculation of potential energy curves of diatomic molecules: application to halogen molecules,
J. Quant. Spectrosc. Radiat. Transfer, 1971, 11, 443. [all data]
Goscinski, 1972
Goscinski, O.,
Outer vibrational turning points near dissociation in the B(3Π0u+) state of Br2 and Cl2,
Mol. Phys., 1972, 24, 655. [all data]
Yee and Stone, 1973
Yee, K.K.; Stone, T.J.,
Analysis of RKR long-range potentials of the B3Π0u+ states of Br2 and Cl2,
Mol. Phys., 1973, 26, 1169. [all data]
LeRoy, 1974
LeRoy, R.J.,
Long-range potential coefficients from RKR turning points: C6 and C8 for B(3Π0u+)-state Cl2, Br2, and I2,
Can. J. Phys., 1974, 52, 246. [all data]
Capelle, Sakurai, et al., 1971
Capelle, G.; Sakurai, K.; Broida, H.P.,
Lifetimes and self-quenching cross sections of cibrational levels in the B state of bromine excited by a tunable dye laser,
J. Chem. Phys., 1971, 54, 1728. [all data]
McAfee and Hozack, 1976
McAfee, K.B., Jr.; Hozack, R.S.,
Lifetimes and energy transfer near the dissociation limit in bromine,
J. Chem. Phys., 1976, 64, 2491. [all data]
Sulzmann, Bien, et al., 1967
Sulzmann, K.G.P.; Bien, F.; Penner, S.S.,
Intensity and collision half-width measurements using a laser source. II. Continuum and line absorption of Br2 at 6328 A,
J. Quant. Spectrosc. Radiat. Transfer, 1967, 7, 969. [all data]
Clyne and Coxon, 1967
Clyne, M.A.A.; Coxon, J.A.,
The emission spectra of Br2 and IBr formed in atomic recombination processes,
J. Mol. Spectrosc., 1967, 23, 258. [all data]
Dibeler, Walker, et al., 1970
Dibeler, V.H.; Walker, J.A.; McCulloh, K.E.,
Threshold for molecular photoionization of bromine,
J. Chem. Phys., 1970, 53, 4715. [all data]
Frost, McDowell, et al., 1967
Frost, D.C.; McDowell, C.A.; Vroom, D.A.,
Photoelectron spectra of the halogens and the hydrogen halides,
J. Chem. Phys., 1967, 46, 4255. [all data]
Potts and Price, 1971
Potts, A.W.; Price, W.C.,
Photoelectron spectra of the halogens and mixed halides ICI and lBr,
J. Chem. Soc. Faraday Trans., 1971, 67, 1242. [all data]
Holzer, Murphy, et al., 1970, 2
Holzer, W.; Murphy, W.F.; Bernstein, H.J.,
Resonance Raman effect and resonance fluoroscence in halogen gases,
J. Chem. Phys., 1970, 52, 399. [all data]
Baierl and Kiefer, 1975
Baierl, P.; Kiefer, W.,
Hot band and isotopic structure in the resonance Raman spectrum of bromine vapor,
J. Chem. Phys., 1975, 62, 306. [all data]
Baierl, Hochenbleicher, et al., 1975
Baierl, P.; Hochenbleicher, J.G.; Kiefer, W.,
Pure rotational Raman spectra of 79Br2 and 81Br2,
Appl. Spectrosc., 1975, 29, 356. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, References
- Symbols used in this document:
S°gas,1 bar Entropy of gas at standard conditions (1 bar) ΔfH°gas Enthalpy of formation of gas at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.