magnesium oxide
- Formula: MgO
- Molecular weight: 40.3044
- IUPAC Standard InChIKey: CPLXHLVBOLITMK-UHFFFAOYSA-N
- CAS Registry Number: 1309-48-4
- Chemical structure:
This structure is also available as a 2d Mol file - Other names: Magnesium monoxide
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Gas phase thermochemistry data
Go To: Top, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 13.90 | kcal/mol | Review | Chase, 1998 | Data last reviewed in December, 1974 |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 50.973 | cal/mol*K | Review | Chase, 1998 | Data last reviewed in December, 1974 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (cal/mol*K)
H° = standard enthalpy (kcal/mol)
S° = standard entropy (cal/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 5000. to 6000. |
---|---|
A | 7.933868 |
B | 0.464751 |
C | -0.049429 |
D | 0.004986 |
E | 8.094503 |
F | 20.70512 |
G | 66.20220 |
H | 13.90000 |
Reference | Chase, 1998 |
Comment | Data last reviewed in December, 1974 |
Constants of diatomic molecules
Go To: Top, Gas phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Klaus P. Huber and Gerhard H. Herzberg
Data collected through March, 1977
Symbol | Meaning |
---|---|
State | electronic state and / or symmetry symbol |
Te | minimum electronic energy (cm-1) |
ωe | vibrational constant – first term (cm-1) |
ωexe | vibrational constant – second term (cm-1) |
ωeye | vibrational constant – third term (cm-1) |
Be | rotational constant in equilibrium position (cm-1) |
αe | rotational constant – first term (cm-1) |
γe | rotation-vibration interaction constant (cm-1) |
De | centrifugal distortion constant (cm-1) |
βe | rotational constant – first term, centrifugal force (cm-1) |
re | internuclear distance (Å) |
Trans. | observed transition(s) corresponding to electronic state |
ν00 | position of 0-0 band (units noted in table) |
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
G 1Π | [40259.8] | [0.5224] 1 | [2.27E-6] | [1.834] | G → A V | 36365.4 Z | ||||||
↳missing citation | ||||||||||||
G → X R | 39868.6 Z | |||||||||||
↳missing citation | ||||||||||||
F 1Π | (37922) | [696] H | [0.5590] 2 | [1.424E-6] | [1.7728] | F → X R | 37879.1 Z | |||||
↳missing citation | ||||||||||||
E 1Σ+ | (37722) | [705] 3 H | [0.5249] 1 | [1.14E-6] | [1.829] | E → A V | 34180 HQ | |||||
↳missing citation | ||||||||||||
E → X R | 37683.5 Z | |||||||||||
↳missing citation; missing citation | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
C 1Σ- | 30080.6 | 632.4 Z | 5.2 | 0.5008 | 0.0048 | [1.27E-6] 4 | 1.8729 | C → A 5 R | 26500.94 Z | |||
↳missing citation; Trajmar and Ewing, 1965 | ||||||||||||
e 3Σ- | 6 | (e ← a) | ||||||||||
↳Evans and Mackie, 1974 | ||||||||||||
D 1Δ | 29851.6 | 632.5 Z | 5.3 | 0.5014 | 0.0048 | [1.26E-6] 7 | 1.8718 | D → A 5 8 R | 26272.04 Z | |||
↳Trajmar and Ewing, 1965 | ||||||||||||
d 3Δi | (29300) 9 | (650) | (0.50) | (1.87) | d ↔ a (V) | 26867 HQ | ||||||
↳Brewer and Porter, 1954; Evans and Mackie, 1974; Schamps and Gandara, 1976 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
c 3Σ+ | (28300) 10 | (c ← a) | 25900 | |||||||||
↳Evans and Mackie, 1974 | ||||||||||||
B 1Σ+ | 199984.0 | 824.08 Z | 4.76 11 | 0.5822 12 | 0.0045 | 1.14E-6 | 0.025E-6 | 1.7371 | B → A 13 V | 16500.29 Z | ||
↳missing citation | ||||||||||||
B ↔ X 14 V | 20003.57 Z | |||||||||||
↳Lagerqvist, 1943; Lagerqvist and Uhler, 1949; missing citation | ||||||||||||
A 1Π | 3563.3 | 664.44 Z | 3.91 | 0.5056 15 | 0.0046 | 1.18E-6 | 1.8640 | |||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
a 3Πi | (2400) 16 | (650) | (0.50) | (1.87) | ||||||||
X 1Σ+ | 0 | 785.06 Z | 5.18 | 0.5743 12 | 0.0050 | 1.22E-6 | 0.02E-6 | 1.7490 | 17 |
Notes
1 | Several rotational perturbations. |
2 | Small Λ-type doubling; intensity perturbations. |
3 | Data for Mg18O are given by Antic-Jovanovic, Pesic, et al., 1976. |
4 | D1 = 1.30E-6; H0 = 0.48E-11. |
5 | Franck-Condon factors Srivastava and Maheshwari, 1967, Gandara, Schamps, et al., 1970, Shadrin and Zhirnov, 1975. |
6 | Very weakly bound or repulsive state; see Schamps and Lefebvre-Brion, 1972. Continuous absorption above 31250 cm-1 by shock-heated MgO in Ar/O2 mixtures. |
7 | D1 = 1.29E-6. |
8 | For 18O - 16O isotope shifts see Trajmar and Ewing, 1965. |
9 | A ~ -25. |
10 | The assignment of the bands to MgO is still uncertain. See also Schamps and Lefebvre-Brion, 1972. |
11 | Vibrational isotope shifts for 24Mg18O and 26Mg16O Pesic, 1964. |
12 | RKR potential functions Thakur and Singh, 1967. |
13 | Franck-Condon factors Nicholls, 1962; oscillator strength Main, Carlson, et al., 1967, Main and Schadee, 1969. |
14 | Observed in absorption in shock-heated Ar/O2 mixtures containing MgO Evans and Mackie, 1974. Franck-Condon factors Nicholls, 1962, Ortenberg, Glasko, et al., 1964, Prasad, 1965; oscillator strength Main, Carlson, et al., 1967, Main and Schadee, 1969; dependence of transition moment on r from measured intensities Dube, 1973. |
15 | Small Λ-type doubling. |
16 | A ~ -50; Te is the theoretical value of Schamps and Lefebvre-Brion, 1972. An experimental value of 3200 ± 1000 is given by Evans and Mackie, 1974. |
17 | Theoretical ground state properties Yoshimine, 1968; more recent calculations of ground and excited states Schamps and Lefebvre-Brion, 1972. |
18 | The dissociation energy (to Mg 1S + O 3P) is quite uncertain. The value given is the thermochemical value of Drowart, Exsteen, et al., 1964 as corrected Schamps and Lefebvre-Brion, 1972 for the presence of the low-lying a 3Π state. From flame photometry Cotton and Jenkins, 1969 obtain 4.16 eV assuming a 3Σ ground state, while Veits and Gurvich, 1956 also from flame photometry but assuming a 1Σ ground state obtain 4.34 eV. |
References
Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Trajmar and Ewing, 1965
Trajmar, S.; Ewing, G.E.,
The near-ultraviolet bands of MgO: analysis of the D1Δ-A1Π and C1Σ-A1Π systems,
Astrophys. J., 1965, 142, 77. [all data]
Evans and Mackie, 1974
Evans, P.J.; Mackie, J.C.,
Energy levels of gaseous magnesium monoxide and the bond dissociation energy,
Chem. Phys., 1974, 5, 277. [all data]
Brewer and Porter, 1954
Brewer, L.; Porter, R.F.,
A thermodynamic and spectroscopic study of gaseous magnesium oxide,
J. Chem. Phys., 1954, 22, 1867. [all data]
Schamps and Gandara, 1976
Schamps, J.; Gandara, G.,
A 3Δ-3Π transition in the near-ultraviolet spectrum of MgO,
J. Mol. Spectrosc., 1976, 62, 80. [all data]
Lagerqvist, 1943
Lagerqvist, A.,
The greeen bands of magnesium oxide,
Ark. Mat. Astron. Fys., 1943, 29, 1. [all data]
Lagerqvist and Uhler, 1949
Lagerqvist, A.; Uhler, U.,
The red and green bands of magnesium oxide,
Ark. Fys., 1949, 1, 459. [all data]
Antic-Jovanovic, Pesic, et al., 1976
Antic-Jovanovic, A.; Pesic, D.S.; Bojovic, V.,
On the MgO bands of the E1Σ-X1Σ system,
J. Mol. Spectrosc., 1976, 60, 416. [all data]
Srivastava and Maheshwari, 1967
Srivastava, Y.P.; Maheshwari, R.C.,
Overlap integrals and r centroids of D1Δ → A1Π system of MgO,
Proc. Phys. Soc. London, 1967, 90, 1177. [all data]
Gandara, Schamps, et al., 1970
Gandara, G.; Schamps, J.; Becart, M.,
Facteurs de Franck et Condon et r-centroides pour les systemes D1Δ - A1Π et C1Σ- - A1Π de la molecule MgO,
C.R. Acad. Sci. Paris, Ser. B, 1970, 270, 1213. [all data]
Shadrin and Zhirnov, 1975
Shadrin, O.P.; Zhirnov, N.I.,
Calculations of Franck-Condon factors with Poschl-Teller wave functions. 2: Vibrational transition probabilities in the C2Σ-X2Σ and D1Δ-A1Π band systems of the RhC and MgO molecules,
Opt. Spectrosc. Engl. Transl., 1975, 38, 367-368, In original 648. [all data]
Schamps and Lefebvre-Brion, 1972
Schamps, J.; Lefebvre-Brion, H.,
SCF calculations of the electronic states of magnesium monoxide,
J. Chem. Phys., 1972, 56, 573. [all data]
Pesic, 1964
Pesic, D.S.,
Green bands of 24Mg18O and 26Mg16O molecules,
Proc. Phys. Soc. London, 1964, 83, 885. [all data]
Thakur and Singh, 1967
Thakur, S.N.; Singh, R.B.,
Potential curves and bond strength of CP, BeO and MgO,
J. Sci. Res. Banaras Hindu Univ., 1967, 18, 1, 253-264. [all data]
Nicholls, 1962
Nicholls, R.W.,
Franck-Condon factors to high vibrational quantum numbers II: SiO, MgO, SrO, AlO, VO, NO,
J. Res. Nat. Bur. Stand. Sect. A, 1962, 66, 227. [all data]
Main, Carlson, et al., 1967
Main, R.P.; Carlson, D.J.; DuPuis, R.A.,
Measurement of oscillator strengths of the MgO(B1Σ+ - X1Σ+) and MgH(A2Π - X2Σ+) band systems,
J. Quant. Spectrosc. Radiat. Transfer, 1967, 7, 805. [all data]
Main and Schadee, 1969
Main, R.P.; Schadee, A.,
On the oscillator strengths of MgO and F2,
J. Quant. Spectrosc. Radiat. Transfer, 1969, 9, 713. [all data]
Ortenberg, Glasko, et al., 1964
Ortenberg, F.S.; Glasko, V.B.; Dmitriev, A.I.,
Vibrational transition probabilities for band systems of some diatomic oxides. II.,
Sov. Astron. Engl. Transl., 1964, 8, 258, In original 332. [all data]
Prasad, 1965
Prasad, K.,
Franck-Condon factors and r centroids for B-X system of MgO,
Proc. Phys. Soc. London, 1965, 85, 810. [all data]
Dube, 1973
Dube, P.S.,
Variation of the electronic transition moment with the internuclear distance & the effective vibrational temperature in the B1Σ-X1Σ system of the emission spectrum of MgO,
Indian J. Pure Appl. Phys., 1973, 2, 445. [all data]
Yoshimine, 1968
Yoshimine, Y.,
Computed ground state properties of BeO, MgO, CaO, and SrO in molecular orbital approximation,
J. Phys. Soc. Jpn., 1968, 25, 1100. [all data]
Drowart, Exsteen, et al., 1964
Drowart, J.; Exsteen, G.; Verhaegen, G.,
Mass spectrometric determination of the dissociation energy of the molecules MgO, CaO, SrO and Sr2O,
J. Chem. Soc. Faraday Trans., 1964, 60, 1920. [all data]
Cotton and Jenkins, 1969
Cotton, D.H.; Jenkins, D.R.,
Bond-dissociation energy of gaseous magnesium oxide,
Trans. Faraday Soc., 1969, 65, 376. [all data]
Veits and Gurvich, 1956
Veits, I.V.; Gurvich, L.V.,
Dissociation energy of magnesium, calcium, strontium and barium oxides,
Opt. Spektrosk., 1956, 1, 22. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, References
- Symbols used in this document:
S°gas,1 bar Entropy of gas at standard conditions (1 bar) ΔfH°gas Enthalpy of formation of gas at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.