Tantalum monoxide


Gas phase thermochemistry data

Go To: Top, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas45.999kcal/molReviewChase, 1998Data last reviewed in December, 1973
Quantity Value Units Method Reference Comment
gas,1 bar57.627cal/mol*KReviewChase, 1998Data last reviewed in December, 1973

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1700.1700. to 6000.
A 6.7307202.784209
B 3.1840903.468641
C -1.035841-0.296095
D 0.129235-0.001827
E -0.0252045.823261
F 43.7759152.57980
G 64.7260066.49620
H 46.0000046.00000
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in December, 1973 Data last reviewed in December, 1973

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through June, 1975

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 181Ta16O
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
Weak emission bands at 35476 and 36379 cm-1, no analysis.
Cheetham and Barrow, 1967
V (2Δ)5/2     [0.375] 1 2   [3.3E-7]  [1.749] V → X2 R (33280) 1 (Z)
Cheetham and Barrow, 1967
U (2Δ)5/2     [0.3715] 2   [3.3E-7]  [1.7572] U → X2 R (33110) (Z)
Cheetham and Barrow, 1967
T (2Δ)5/2 35954 (891)   [0.37688] 3   [2.70E-7]  [1.74461] T → X2 R 32380.77 Z
Cheetham and Barrow, 1967
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
S (2Δ)5/2 35864 (871)   [0.37536] 3   [2.79E-7]  [1.74814] S → X2 R 32280.40 Z
Cheetham and Barrow, 1967
R (2Δ)3/2 32445 (885)   [0.38393] 3   [2.89E-7] 4  [1.72852] R → X1 R 32373.60 Z
Cheetham and Barrow, 1967
Q (29306) [(895)] 5         Q ← X1 (29240) 5
Weltner and McLeod, 1965
Q' (2Δ)5/2 27353.0 [896.1] Z (4.07)  0.381834 6 0.00219  [2.744E-7]  1.73326 Q' → X2 R 23785.20 Z
Cheetham and Barrow, 1967
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
P (2Δ)3/2 26736.19 902.68 Z 4.08  0.377500 7 0.00181  [2.573E-7]  1.74318 P ↔ X1 R 26673.04 Z
Premaswarup, 1955; missing citation; Premaswarup and Barrow, 1957; Weltner and McLeod, 1965; Cheetham and Barrow, 1967
O (26342) (913) 5 (4.5)        O ← X1 (26284) 5
Weltner and McLeod, 1965
O' (2Φ)7/2 26186 (899)   [0.381304]   [2.745E-7]  [1.734462] O' → X1 R 22616.07 Z
Cheetham and Barrow, 1967
N (2Π)3/2 25657 (900)   [0.377207]   [2.649E-7]  [1.74386] N → X2 R 22087.70 Z
Cheetham and Barrow, 1967
           N ↔ X1 R 25593.13 Z
Weltner and McLeod, 1965; Cheetham and Barrow, 1967
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
M (2Φ)5/2 24123.7 [890.31] Z 4.1 H  0.377064 0.00184  [2.635E-7]  1.74419 M ↔ X1 R 24058.42 Z
missing citation; Premaswarup and Barrow, 1957; Weltner and McLeod, 1965; Cheetham and Barrow, 1967
L (2Π)1/2 23408.3 [887.70] Z 4.1 H  0.377424 8 0.00195  [2.706E-7]  1.74335 L ↔ X1 R 23341.74 Z
missing citation; Premaswarup and Barrow, 1957; Weltner and McLeod, 1965; Cheetham and Barrow, 1967
K' (2Φ)7/2 22981.58 903.06 Z 3.56  0.38081 0.00192  [2.756E-7]  1.73559 K' → X2 R 19413.32 Z
Cheetham and Barrow, 1967
(22396) (901.7) 5 (3.34)        K ↔ X1 (22333) 5
Weltner and McLeod, 1965
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
J (22196) (892) 5 (3)        J ← X1 (22128) 5
Weltner and McLeod, 1965
(I)Ne matrix emission and absorption spectra suggest the existance of an additional state close to H.
Weltner and McLeod, 1965
H (20868) [(900)] 9         H ↔ X1 (20805) 9
Weltner and McLeod, 1965
G           G ← X1 (18007) 5
Weltner and McLeod, 1965
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
F (16770) [(922)] 5         F ← X1 (16718) 5
Weltner and McLeod, 1965
F 10           R 16051 Z
Cheetham and Barrow, 1967
E (2Φ)5/2 15928 (935) 5 (5)  [0.38618] 11   [3.26E-7]  [1.72348] E ↔ X1 R 15880.62 Z
Weltner and McLeod, 1965; Cheetham and Barrow, 1967
D (14437) (943) 12         D ↔ X1 (14395) 5 13
Weltner and McLeod, 1965; Cheetham and Barrow, 1967
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
C (2Δ)3/2 13612 (942)   [0.387547]   [2.624E-7]  [1.72044] C ↔ X1 R 13569.27 Z
Weltner and McLeod, 1965; Cheetham and Barrow, 1967
B (2Φ)5/2 12900 (931)   [0.386851]   [2.674E-7]  [1.72198] B ↔ X1 R 12852.02 Z
Weltner and McLeod, 1965; Cheetham and Barrow, 1967
A (12134) [(939)] 14         A ↔ X1 (12090) 15
Weltner and McLeod, 1965; Cheetham and Barrow, 1967
A' (2Π)1/2     [0.389]     [1.717] A' → X1 R (11062) (Z)
Cheetham and Barrow, 1967
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
A" (2Δ)3/2 10908 (933)   [0.387291]   [2.668E-7]  [1.72100] A" → X1 R 10860.95 Z
Cheetham and Barrow, 1967
X2 (2Δ)5/2 3504.39 1030.81 Z 3.59  0.403584 0.00187  [2.503E-7]  1.68591  
X1 (2Δ)3/2 0 1028.69 Z 3.51  0.402840 0.00182  [2.450E-7]  1.68746 16  
Weltner and McLeod, 1965

Notes

1This level could possibly be T(v=1).
2Extensive perturbations.
3Perturbations.
4 Cheetham and Barrow, 1967 give 2.289 which appears to be a misprint.
5From the Ne matrix absorption spectrum.
6Perturbations in v=0.
7v=1 perturbed by a state of higher B value.
8Λ-type doubling Δv(v=0) = 0.0927(J+1/2).
9From Ne matrix absorption and emission spectra.
10Incompletely analysed emission band.
11Perturbed by a state of larger B value.
12Calculated from Ta18O frequency in neon.
13In the gas phase probably at 14362 cm-1.
14From the Ar matrix absorption spectrum.
15From Cheetham and Barrow, 1967; the observed band is too weak for analysis.
16IR spectrum 18
17Average of two thermochemical values (mass-spectrometry). Inghram, Chupka, et al., 1957, Krikorian and Carpenter, 1965
18In rare gas matrices.

References

Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Cheetham and Barrow, 1967
Cheetham, C.J.; Barrow, R.F., Rotational analysis of electronic bands of gaseous TaO, Trans. Faraday Soc., 1967, 63, 1835. [all data]

Weltner and McLeod, 1965
Weltner, W., Jr.; McLeod, D., Jr., Spectroscopy of TaO and TaO2 in Neon and Argon Matrices at 4° and 20°K, J. Chem. Phys., 1965, 42, 3, 882, https://doi.org/10.1063/1.1696076 . [all data]

Premaswarup, 1955
Premaswarup, D., Vibrational analysis of the tantalum oxide bands, Indian J. Phys., 1955, 29, 109. [all data]

Premaswarup and Barrow, 1957
Premaswarup, D.; Barrow, R.F., Rotational analysis of the tantalum oxide bands, Nature (London), 1957, 180, 602. [all data]

Inghram, Chupka, et al., 1957
Inghram, M.G.; Chupka, W.A.; Berkowitz, J., Thermodynamics of the Ta-O system: the dissociation energies of TaO and TaO2, J. Chem. Phys., 1957, 27, 569. [all data]

Krikorian and Carpenter, 1965
Krikorian, O.H.; Carpenter, J.H., Enthalpies of formation of gaseous tantalum oxide and tantalum dioxide, J. Phys. Chem., 1965, 69, 4399. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, References