Ethane, hexafluoro-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Phase change data

Go To: Top, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil195. ± 2.KAVGN/AAverage of 12 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus173.1KN/AThorp and Scott, 1956Uncertainty assigned by TRC = 0.5 K; TRC
Tfus172.65KN/ARuff and Bretschneider, 1933Uncertainty assigned by TRC = 0.5 K; TRC
Tfus166.85KN/ASwarts, 1933Uncertainty assigned by TRC = 0.02 K; TRC
Quantity Value Units Method Reference Comment
Ttriple173.08KN/ALobo and Staveley, 1979Uncertainty assigned by TRC = 0.005 K; TRC
Ttriple173.10KN/APace and Aston, 1948Crystal phase 1 phase; Uncertainty assigned by TRC = 0.02 K; TRC
Quantity Value Units Method Reference Comment
Ptriple0.2591atmN/ALobo and Staveley, 1979Uncertainty assigned by TRC = 0.00004 atm; TRC
Ptriple0.2986atmN/ASwarts, 1933Uncertainty assigned by TRC = 0.0001 atm; TRC
Quantity Value Units Method Reference Comment
Tc292.8KN/AMajer and Svoboda, 1985 
Tc293.030KN/ASaikawa, Kijima, et al., 1979Uncertainty assigned by TRC = 0.01 K; TRC
Tc293.01KN/AKijima, Saikawa, et al., 1977Uncertainty assigned by TRC = 0.01 K; TRC
Tc292.66KN/AKim, 1974Uncertainty assigned by TRC = 0.05 K; TRC
Tc292.85KN/ASwarts, 1933Uncertainty assigned by TRC = 0.05 K; TRC
Quantity Value Units Method Reference Comment
Pc30.02atmN/ASaikawa, Kijima, et al., 1979Uncertainty assigned by TRC = 0.08 atm; derived from published vapor pressure data; TRC
Pc30.00atmN/AKijima, Saikawa, et al., 1977Uncertainty assigned by TRC = 0.011 atm; TRC
Pc29.7361atmN/AKim, 1974Uncertainty assigned by TRC = 0.0340 atm; TRC
Quantity Value Units Method Reference Comment
ρc4.51mol/lN/ASaikawa, Kijima, et al., 1979Uncertainty assigned by TRC = 0.072 mol/l; TRC
ρc4.20mol/lN/AKijima, Saikawa, et al., 1977Uncertainty assigned by TRC = 0.14 mol/l; TRC

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
3.8599194.87N/APace and Aston, 1948, 2P = 101.325 kPA; DH
4.13186.AStephenson and Malanowski, 1987Based on data from 172. to 200. K.; AC
3.860195.N/AMajer and Svoboda, 1985 
4.09188.N/APace and Aston, 1948, 2Based on data from 180. to 196. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kcal/mol) β Tc (K) Reference Comment
180. to 195.5.8100.232292.8Majer and Svoboda, 1985 

Entropy of vaporization

ΔvapS (cal/mol*K) Temperature (K) Reference Comment
19.81194.87Pace and Aston, 1948, 2P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
179.96 to 195.213.97442677.112-24.506Pace and Aston, 1948, 2Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kcal/mol) Temperature (K) Reference Comment
6.21103.Bondi, 1963See also Pace and Aston, 1948, 2.; AC

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
0.643173.1Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
8.58104.0Domalski and Hearing, 1996CAL
3.70173.1

Enthalpy of phase transition

ΔHtrs (kcal/mol) Temperature (K) Initial Phase Final Phase Reference Comment
0.8929103.98crystaline, IIcrystaline, IPace and Aston, 1948, 2DH
0.6420173.10crystaline, IliquidPace and Aston, 1948, 2DH

Entropy of phase transition

ΔStrs (cal/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
8.587103.98crystaline, IIcrystaline, IPace and Aston, 1948, 2DH
3.709173.10crystaline, IliquidPace and Aston, 1948, 2DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


IR Spectrum

Go To: Top, Phase change data, Mass spectrum (electron ionization), References, Notes

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty


Mass spectrum (electron ionization)

Go To: Top, Phase change data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 3610

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Thorp and Scott, 1956
Thorp, N.; Scott, R.L., Fluorocarbon solutions at low termperatures. I. The liquid mixtures CF4-CHF3, CF4-CH4, CF4-Kr, CH4-Kr., J. Phys. Chem., 1956, 60, 670. [all data]

Ruff and Bretschneider, 1933
Ruff, O.; Bretschneider, O., The Preparation of Hexafluoroethane and Tetrafluoroethene from Tetrafluoromethane, Z. Anorg. Allg. Chem., 1933, 210, 173. [all data]

Swarts, 1933
Swarts, F., Hexafluoroethane., Bull. Soc. Chim. Belg., 1933, 42, 114. [all data]

Lobo and Staveley, 1979
Lobo, L.Q.; Staveley, L.A.K., The vapour pressure of tetrafluoromethane., Cryogenics, 1979, 19, 335. [all data]

Pace and Aston, 1948
Pace, E.L.; Aston, J.G., The thermodynamics of hexafluoroethane from calorimetric and spectroscopic data, J. Am. Chem. Soc., 1948, 70, 566. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Saikawa, Kijima, et al., 1979
Saikawa, K.; Kijima, J.; Uematsu, M.; Watanabe, K., Determination of the critical temperature and density of hexafluoroethane, J. Chem. Eng. Data, 1979, 24, 165-7. [all data]

Kijima, Saikawa, et al., 1977
Kijima, J.; Saikawa, K.; Watanabe, K.; Oguchi, K.; Tanishita, I., Experimental study of thermodyn. prop. of hexafluoroethane (R116) in Proc. Symp. Thermophys. Prop., 7th, Cezairliyan, A., Ed., ASME: New York, p 480, 1977. [all data]

Kim, 1974
Kim, K.Y., Calorimetric studies on argon and Hexafluoroethane and a generalized correlation of maxima in isobaric heat capacity., Ph.D. Dissertation, Univ. Mich., Ann Arbour, MI, 1974. [all data]

Pace and Aston, 1948, 2
Pace, E.L.; Aston, J.G., The thermodynamics of hexafluoroethane from calorimetric and spectroscopic data, J. Am. Chem. Soc., 1948, 70, 566-570. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Bondi, 1963
Bondi, A., Heat of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments., J. Chem. Eng. Data, 1963, 8, 3, 371-381, https://doi.org/10.1021/je60018a027 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]


Notes

Go To: Top, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References