Ethylene oxide

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Phase change data

Go To: Top, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Tboil283.7KN/AMajer and Svoboda, 1985 
Tboil286.15KN/AMoureu and Dode, 1937Uncertainty assigned by TRC = 1.5 K; TRC
Tboil283.85KN/ATimmermans and Hennaut-Roland, 1937Uncertainty assigned by TRC = 0.4 K; TRC
Tboil283.88KN/AMaass and Boomer, 1922Uncertainty assigned by TRC = 0.2 K; TRC
Tboil286.KN/AVon Auwers and Eisenlohr, 1910Uncertainty assigned by TRC = 4. K; TRC
Quantity Value Units Method Reference Comment
Tfus160.6KN/AMcDonald, Shrader, et al., 1959Uncertainty assigned by TRC = 0.07 K; TRC
Tfus161.45KN/ATimmermans and Hennaut-Roland, 1937Uncertainty assigned by TRC = 0.4 K; TRC
Tfus161.9KN/AMaass and Boomer, 1922Uncertainty assigned by TRC = 0.6 K; TRC
Quantity Value Units Method Reference Comment
Ttriple160.65KN/AWilhoit, Chao, et al., 1985Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple160.65KN/AGiauque and Gordon, 1949Uncertainty assigned by TRC = 0.02 K; TRC
Quantity Value Units Method Reference Comment
Tc468.9KN/AWalters and Smith, 1952Uncertainty assigned by TRC = 1.11 K; TRC
Tc469.0KN/AHess and Tilton, 1950Uncertainty assigned by TRC = 1. K; TRC
Tc465.2KN/AMaass and Boomer, 1922Uncertainty assigned by TRC = 2. K; TRC
Quantity Value Units Method Reference Comment
Pc71.38atmN/AWalters and Smith, 1952Uncertainty assigned by TRC = 0.6804 atm; TRC
Pc70.97atmN/AHess and Tilton, 1950Uncertainty assigned by TRC = 0.7485 atm; TRC
Quantity Value Units Method Reference Comment
ρc7.13mol/lN/AWalters and Smith, 1952Uncertainty assigned by TRC = 0.23 mol/l; TRC
ρc7.26mol/lN/APost, 1950Uncertainty assigned by TRC = 0.23 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap6.097kcal/molN/AMajer and Svoboda, 1985 
Δvap6.19kcal/molAStephenson and Malanowski, 1987Based on data from 283. to 385. K.; AC

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
6.1011283.66N/AGiauque and Gordon, 1949, 2P = 101.325 kPa; DH
6.104283.7N/AMajer and Svoboda, 1985 
6.41269.AStephenson and Malanowski, 1987Based on data from 239. to 284. K. See also McDonald, Shrader, et al., 1959, 2 and Dykyj, 1970.; AC
6.41269.AStephenson and Malanowski, 1987Based on data from 223. to 284. K. See also Giauque and Gordon, 1949, 2.; AC
6.10 ± 0.06283.66VGiauque and Gordon, 1949, 3ALS
6.43290.N/AMoor, Kanep, et al., 1937Based on data from 268. to 313. K.; AC

Entropy of vaporization

ΔvapS (cal/mol*K) Temperature (K) Reference Comment
21.51283.66Giauque and Gordon, 1949, 2P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
182.59 to 283.594.3801115.1-29.015McDonald, Shrader, et al., 1959, 2 
273.4 to 304.95.841252022.8362.656Coles and Popper, 1950Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
1.2364160.65Giauque and Gordon, 1949, 2DH
1.24160.7Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
7.696160.65Giauque and Gordon, 1949, 2DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


IR Spectrum

Go To: Top, Phase change data, Mass spectrum (electron ionization), References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty


Mass spectrum (electron ionization)

Go To: Top, Phase change data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 18867

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Moureu and Dode, 1937
Moureu, H.; Dode, M., Heats of Formation of Ethylene Oxide, of Ethandiol and oof Several Homologs, Bull. Soc. Chim. Fr., 1937, 4, 637-47. [all data]

Timmermans and Hennaut-Roland, 1937
Timmermans, J.; Hennaut-Roland, M., Works from International Bureau at Physical-Chemical Standards. VIII. Physical constants of 20 organic compounds, J. Chim. Phys. Phys.-Chim. Biol., 1937, 34, 693. [all data]

Maass and Boomer, 1922
Maass, O.; Boomer, E.H., Vapor Densities at Low Pressures and Over and Extended Temperature Range. I. The Properties of Ethylene Oxide Compared to Oxygen Compounds of Similar Molecular Weight, J. Am. Chem. Soc., 1922, 44, 8, 1709-1728, https://doi.org/10.1021/ja01429a013 . [all data]

Von Auwers and Eisenlohr, 1910
Von Auwers, K.; Eisenlohr, F., Spectrochemical studies. I. Refraction & dispersion of hydrocarbon aldehydes, ketones, acids & esters with i pair of conjug. double bonds, J. Prakt. Chem., 1910, 82, 65. [all data]

McDonald, Shrader, et al., 1959
McDonald, R.A.; Shrader, S.A.; Stull, D.R., Vapor Pressures and Freezing Points of 30 Organics, J. Chem. Eng. Data, 1959, 4, 311. [all data]

Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Giauque and Gordon, 1949
Giauque, W.F.; Gordon, J., The entropy of ethylene oxide heat capacity from 14 to 285c vapor pressure heats of fusion and vaporization, J. Am. Chem. Soc., 1949, 71, 2176. [all data]

Walters and Smith, 1952
Walters, C.J.; Smith, J.M., Volumetric Behaviour and Thermodynamic Properties of Ethylene Oxide, Chem. Eng. Prog., 1952, 48, 337. [all data]

Hess and Tilton, 1950
Hess, L.G.; Tilton, V.V., Ethylene Oxide - Hazards and Methods of Handling., Ind. Eng. Chem., 1950, 42, 1251-8. [all data]

Post, 1950
Post, R.G., , Unpublished Rep., Chem. Eng. No. 362, 1950. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Giauque and Gordon, 1949, 2
Giauque, W.F.; Gordon, J., The entropy of ethylene oxide. Heat capacity from 14 to 285K. Vapor pressure. Heats of fusion and vaporization, J. Am. Chem. Soc., 1949, 71, 2176-2181. [all data]

McDonald, Shrader, et al., 1959, 2
McDonald, R.A.; Shrader, S.A.; Stull, D.R., Vapor Pressures and Freezing Points of Thirty Pure Organic Compounds., J. Chem. Eng. Data, 1959, 4, 4, 311-313, https://doi.org/10.1021/je60004a009 . [all data]

Dykyj, 1970
Dykyj, J., Petrochemica, 1970, 10, 2, 51. [all data]

Giauque and Gordon, 1949, 3
Giauque, W.F.; Gordon, J., The entropy of ethylene oxide. Heat capacity from 14 to 285°K. Vapor pressure. Heats of fusion and vaporization, J. Am. Chem. Soc., 1949, 71, 2176-21. [all data]

Moor, Kanep, et al., 1937
Moor, V.G.; Kanep, E.K.; Dobkin, I.E., Trans. Exptl. Research Lab. Khemgas, Materials on Cracking and Chemical Treatment of Cracking Products U.S.S.R., 1937, 3, 320. [all data]

Coles and Popper, 1950
Coles, K.F.; Popper, Felix, Vapor-Liquid Equilibria. Ethylene Oxide - Acetaldehyde and Ethylene Oxide - Water Systems, Ind. Eng. Chem., 1950, 42, 7, 1434-1438, https://doi.org/10.1021/ie50487a046 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]


Notes

Go To: Top, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References