2-Propanol, 2-methyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-74.72 ± 0.21kcal/molEqkWiberg and Hao, 1991Heat of hydration; ALS
Δfgas-74.9 ± 0.35kcal/molCcbSkinner and Snelson, 1960ALS
Δfgas-74.02kcal/molN/ATaft and Riesz, 1955Value computed using ΔfHliquid° value of -356.0 kj/mol from Taft and Riesz, 1955 and ΔvapH° value of 46.3 kj/mol from Skinner and Snelson, 1960.; DRB

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
8.56850.Thermodynamics Research Center, 1997p=1 bar. Selected values of S(T) and Cp(T) are in good agreement with those of [ Beynon E.T., 1963] because of using practically the same molecular constants in two calculations. Please also see Chao J., 1986.; GT
12.60100.
16.83150.
20.38200.
25.404273.15
27.158 ± 0.050298.15
27.290300.
34.175400.
40.246500.
45.327600.
49.591700.
53.229800.
56.370900.
59.0971000.
61.4721100.
63.5401200.
65.3371300.
66.9021400.
68.2651500.
70.961750.
72.872000.
74.262250.
75.262500.
76.002750.
76.553000.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
31.87 ± 0.27360.55Stromsoe E., 1970Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 1.13 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Please also see Beynon E.T., 1963.; GT
31.699365.15
32.56 ± 0.27372.85
32.971383.15
33.27 ± 0.27385.65
34.149401.15
34.68 ± 0.27410.85
35.390419.15
36.699437.15
36.30 ± 0.27439.85
36.39 ± 0.27441.45
38.02 ± 0.27470.75
39.61 ± 0.27499.25
41.25 ± 0.27528.75
43.84 ± 0.27575.05
44.76 ± 0.27591.55

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-85.86 ± 0.20kcal/molEqkWiberg and Hao, 1991Heat of hydration; ALS
Δfliquid-85.87 ± 0.19kcal/molCcbSkinner and Snelson, 1960ALS
Δfliquid-85.0kcal/molEqkTaft and Riesz, 1955ALS
Quantity Value Units Method Reference Comment
Δcliquid-631.92 ± 0.19kcal/molCcbSkinner and Snelson, 1960Corresponding Δfliquid = -85.86 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid45.29cal/mol*KN/AParks, Kelley, et al., 1929Extrapolation bloew 90 K, 45.19 J/mol*K. Revision of previous data.; DH
liquid47.20cal/mol*KN/AParks and Anderson, 1926Extrapolation below 90 K, 53.35 J/mol*K.; DH
Quantity Value Units Method Reference Comment
Δcsolid-629.4kcal/molCcbRaley, Rust, et al., 1948Corresponding Δfsolid = -88.4 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
solid,1 bar40.839cal/mol*KN/AOetting F.L., 1963crystaline, I phase; DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
51.475298.15Caceres-Alonso, Costas, et al., 1988DH
53.031299.15Okano, Ogawa, et al., 1988DH
50.2298.De Visser, Perron, et al., 1977DH
50.2298.15De Visser, Perron, et al., 1977, 2T = 298.15, 313.15, 328.15 K.; DH
53.75298.15Murthy and Subrahmanyam, 1977DH
52.25298.15Skold, Suurkuusk, et al., 1976DH
53.70300.Parks and Anderson, 1926T = 87 to 300 K. Value is unsmoothed experimental datum.; DH

Constant pressure heat capacity of solid

Cp,solid (cal/mol*K) Temperature (K) Reference Comment
34.921298.15Oetting F.L., 1963crystaline, I phase; T = 15 to 330 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil355.5 ± 0.7KAVGN/AAverage of 65 out of 70 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus298.3 ± 0.7KAVGN/AAverage of 15 out of 17 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple298.96KN/AWilhoit, Chao, et al., 1985Crystal phase 1 phase; Uncertainty assigned by TRC = 0.06 K; TRC
Ttriple298.97KN/AOetting, 1963Crystal phase 1 phase; Uncertainty assigned by TRC = 0.06 K; TRC
Ttriple298.5KN/AParks and Anderson, 1926, 2Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tc506.2 ± 0.3KN/AGude and Teja, 1995 
Tc506.2KN/AMajer and Svoboda, 1985 
Tc506.2KN/AAmbrose and Townsend, 1963TRC
Tc508.9KN/AKrone and Johnson, 1956TRC
Tc508.1KN/APawlewski, 1883TRC
Quantity Value Units Method Reference Comment
Pc39.2 ± 0.2atmN/AGude and Teja, 1995 
Pc39.20atmN/AAmbrose and Townsend, 1963TRC
Pc41.77atmN/AKrone and Johnson, 1956TRC
Quantity Value Units Method Reference Comment
Vc0.275l/molN/AGude and Teja, 1995 
Quantity Value Units Method Reference Comment
ρc3.64 ± 0.02mol/lN/AGude and Teja, 1995 
ρc3.643mol/lN/AAmbrose and Townsend, 1963TRC
ρc3.48mol/lN/AKrone and Johnson, 1956TRC
Quantity Value Units Method Reference Comment
Δvap11.1 ± 0.3kcal/molAVGN/AAverage of 11 values; Individual data points
Quantity Value Units Method Reference Comment
Δsub9.7kcal/molVRaley, Rust, et al., 1948ALS

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
9.338355.5N/AMajer and Svoboda, 1985 
10.2338.N/AOrtega, Espiau, et al., 2003Based on data from 323. to 368. K.; AC
10.4336.N/AAucejo, Loras, et al., 1999Based on data from 321. to 359. K.; AC
11.0314.AStephenson and Malanowski, 1987Based on data from 299. to 375. K.; AC
9.89355.AStephenson and Malanowski, 1987Based on data from 347. to 363. K.; AC
10.3371.AStephenson and Malanowski, 1987Based on data from 356. to 480. K.; AC
9.89355.AStephenson and Malanowski, 1987Based on data from 347. to 363. K.; AC
9.51372.AStephenson and Malanowski, 1987Based on data from 357. to 461. K.; AC
8.03468.AStephenson and Malanowski, 1987Based on data from 453. to 506. K.; AC
10.2344.EBStephenson and Malanowski, 1987Based on data from 329. to 363. K. See also Ambrose, Counsell, et al., 1970 and Beynon and McKetta, 1963.; AC
11.02 ± 0.01303.2CMajer, Svoboda, et al., 1984ALS
11.0 ± 0.02303.CMajer, Svoboda, et al., 1984AC
10.7 ± 0.02313.CMajer, Svoboda, et al., 1984AC
10.3 ± 0.02328.CMajer, Svoboda, et al., 1984AC
9.80 ± 0.02343.CMajer, Svoboda, et al., 1984AC
8.89 ± 0.02368.CMajer, Svoboda, et al., 1984AC
10.7321.N/ASachek, Peshchenko, et al., 1982Based on data from 306. to 357. K.; AC
11.1308.N/AWilhoit and Zwolinski, 1973Based on data from 293. to 376. K.; AC
10.6328.N/ABrown, Fock, et al., 1969Based on data from 313. to 355. K. See also Boublik, Fried, et al., 1984.; AC
9.25388.N/AAmbrose and Townsend, 1963, 2Based on data from 373. to 506. K.; AC
10.1348.EBBeynon and McKetta, 1963Based on data from 333. to 363. K.; AC
10.2 ± 0.02330.CBeynon and McKetta, 1963AC
9.87 ± 0.02340.CBeynon and McKetta, 1963AC
9.66 ± 0.02346.CBeynon and McKetta, 1963AC
9.56 ± 0.02349.CBeynon and McKetta, 1963AC
9.32 ± 0.02356.CBeynon and McKetta, 1963AC
10.7323.N/AParks and Barton, 1928Based on data from 293. to 363. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 298. to 385.
A (kcal/mol) 16.51
α -0.3583
β 0.678
Tc (K) 506.2
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
312.66 to 355.564.492031174.869-93.92Brown, Fock, et al., 1969Coefficents calculated by NIST from author's data.
376.42 to 506.4.258121075.578-102.588Ambrose and Townsend, 1963, 3Coefficents calculated by NIST from author's data.
330.6 to 363.4.587521225.649-88.316Beynon and McKetta, 1963Coefficents calculated by NIST from author's data.
333.93 to 362.714.326871095.084-102.409Biddiscombe, Collerson, et al., 1963Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kcal/mol) Temperature (K) Method Reference Comment
12.3275.AStull, 1947Based on data from 253. to 298. K.; AC

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
1.6299.Domalski and Hearing, 1996AC
1.621298.5Parks and Anderson, 1926DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
5.430298.5Parks and Anderson, 1926DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
0.69286.1Domalski and Hearing, 1996CAL
0.397294.5
5.359299.0

Enthalpy of phase transition

ΔHtrs (kcal/mol) Temperature (K) Initial Phase Final Phase Reference Comment
0.198286.14crystaline, IIcrystaline, IOetting F.L., 1963DH
0.117294.47crystaline, IIIcrystaline, IOetting F.L., 1963Metastable transition, not always reproducible, c,III,metastable form.; DH
1.6020298.97crystaline, IliquidOetting F.L., 1963DH

Entropy of phase transition

ΔStrs (cal/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
0.691286.14crystaline, IIcrystaline, IOetting F.L., 1963DH
0.397294.47crystaline, IIIcrystaline, IOetting F.L., 1963Metastable; DH
5.359298.97crystaline, IliquidOetting F.L., 1963DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Chlorine anion + 2-Propanol, 2-methyl- = (Chlorine anion • 2-Propanol, 2-methyl-)

By formula: Cl- + C4H10O = (Cl- • C4H10O)

Quantity Value Units Method Reference Comment
Δr19. ± 4.kcal/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr27.4cal/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Δr24.0cal/mol*KPHPMSSieck, 1985gas phase; M
Δr23.4cal/mol*KN/ALarson and McMahon, 1984gas phase; Entropy change calculated or estimated; French, Ikuta, et al., 1982; M
Δr27.cal/mol*KPHPMSKebarle, 1977gas phase; M
Δr10.3cal/mol*KN/AYamdagni and Kebarle, 1971gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr11.58kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr12.30 ± 0.30kcal/molTDAsSieck, 1985gas phase; B
Δr11.60kcal/molTDAsHiraoka and Mizuse, 1987gas phase; B
Δr11.1 ± 2.0kcal/molIMRELarson and McMahon, 1984, 2gas phase; B,M
Δr11.1 ± 2.0kcal/molTDAsYamdagni and Kebarle, 1971gas phase; B

C4H9O- + Hydrogen cation = 2-Propanol, 2-methyl-

By formula: C4H9O- + H+ = C4H10O

Quantity Value Units Method Reference Comment
Δr374.7 ± 1.0kcal/molD-EARamond, Davico, et al., 2000gas phase; B
Δr374.6 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr376.00 ± 0.70kcal/molCIDTDeTuri and Ervin, 1999gas phase; B
Δr374.3 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Quantity Value Units Method Reference Comment
Δr368.1 ± 1.1kcal/molH-TSRamond, Davico, et al., 2000gas phase; B
Δr368.0 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr367.7 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B

C4H9O- + 2-Propanol, 2-methyl- = (C4H9O- • 2-Propanol, 2-methyl-)

By formula: C4H9O- + C4H10O = (C4H9O- • C4H10O)

Quantity Value Units Method Reference Comment
Δr27.9 ± 2.9kcal/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M
Quantity Value Units Method Reference Comment
Δr29.3cal/mol*KN/ACaldwell, Rozeboom, et al., 1984gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M
Quantity Value Units Method Reference Comment
Δr18.8 ± 2.0kcal/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M

Fluorine anion + 2-Propanol, 2-methyl- = (Fluorine anion • 2-Propanol, 2-methyl-)

By formula: F- + C4H10O = (F- • C4H10O)

Quantity Value Units Method Reference Comment
Δr33.40 ± 0.70kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr33.3 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; B,M
Δr32.7 ± 2.2kcal/molCIDTDeTuri and Ervin, 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr26.1cal/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr26.01kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr25.5 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; B,M

C3H9Sn+ + 2-Propanol, 2-methyl- = (C3H9Sn+ • 2-Propanol, 2-methyl-)

By formula: C3H9Sn+ + C4H10O = (C3H9Sn+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr36.6kcal/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr32.4cal/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
19.6525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

C5H11O- + 2-Propanol, 2-methyl- = (C5H11O- • 2-Propanol, 2-methyl-)

By formula: C5H11O- + C4H10O = (C5H11O- • C4H10O)

Quantity Value Units Method Reference Comment
Δr27.4 ± 2.9kcal/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr18.7 ± 2.0kcal/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B

(Chlorine anion • 22-Propanol, 2-methyl-) + 2-Propanol, 2-methyl- = (Chlorine anion • 32-Propanol, 2-methyl-)

By formula: (Cl- • 2C4H10O) + C4H10O = (Cl- • 3C4H10O)

Quantity Value Units Method Reference Comment
Δr15.80 ± 0.30kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr13.7 ± 1.0kcal/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr31.0cal/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr5.07kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr4.4 ± 1.0kcal/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 2-Propanol, 2-methyl-) + 2-Propanol, 2-methyl- = (Chlorine anion • 22-Propanol, 2-methyl-)

By formula: (Cl- • C4H10O) + C4H10O = (Cl- • 2C4H10O)

Quantity Value Units Method Reference Comment
Δr16.90 ± 0.20kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr14.9 ± 1.0kcal/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr25.8cal/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr7.36kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr7.2 ± 1.0kcal/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 52-Propanol, 2-methyl-) + 2-Propanol, 2-methyl- = (Chlorine anion • 62-Propanol, 2-methyl-)

By formula: (Cl- • 5C4H10O) + C4H10O = (Cl- • 6C4H10O)

Quantity Value Units Method Reference Comment
Δr11.4 ± 1.0kcal/molTDAsHiraoka and Mizuse, 1987gas phase; Estimated entropy; single temperature measurement; B,M
Quantity Value Units Method Reference Comment
Δr32.cal/mol*KN/AHiraoka and Mizuse, 1987gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr1.8 ± 1.0kcal/molTDAsHiraoka and Mizuse, 1987gas phase; Estimated entropy; single temperature measurement; B

CH6N+ + 2-Propanol, 2-methyl- = (CH6N+ • 2-Propanol, 2-methyl-)

By formula: CH6N+ + C4H10O = (CH6N+ • C4H10O)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr22.9kcal/molPHPMSMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KN/AMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
10.0495.PHPMSMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M

Iodide + 2-Propanol, 2-methyl- = (Iodide • 2-Propanol, 2-methyl-)

By formula: I- + C4H10O = (I- • C4H10O)

Quantity Value Units Method Reference Comment
Δr13.10 ± 0.30kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr12.1 ± 1.0kcal/molTDAsCaldwell and Kebarle, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr18.7cal/mol*KPHPMSCaldwell and Kebarle, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr6.15kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr6.5 ± 1.0kcal/molTDAsCaldwell and Kebarle, 1984gas phase; B

CN- + 2-Propanol, 2-methyl- = (CN- • 2-Propanol, 2-methyl-)

By formula: CN- + C4H10O = (CN- • C4H10O)

Quantity Value Units Method Reference Comment
Δr18.1 ± 3.5kcal/molIMRELarson and McMahon, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr24.8cal/mol*KN/ALarson and McMahon, 1987gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
Δr10.7 ± 2.3kcal/molIMRELarson and McMahon, 1987gas phase; B,M

(Chlorine anion • 32-Propanol, 2-methyl-) + 2-Propanol, 2-methyl- = (Chlorine anion • 42-Propanol, 2-methyl-)

By formula: (Cl- • 3C4H10O) + C4H10O = (Cl- • 4C4H10O)

Quantity Value Units Method Reference Comment
Δr12.7 ± 1.0kcal/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr31.3cal/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr3.3 ± 1.0kcal/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 42-Propanol, 2-methyl-) + 2-Propanol, 2-methyl- = (Chlorine anion • 52-Propanol, 2-methyl-)

By formula: (Cl- • 4C4H10O) + C4H10O = (Cl- • 5C4H10O)

Quantity Value Units Method Reference Comment
Δr11.9 ± 1.0kcal/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr32.3cal/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr2.2 ± 1.0kcal/molTDAsHiraoka and Mizuse, 1987gas phase; B

HS- + 2-Propanol, 2-methyl- = (HS- • 2-Propanol, 2-methyl-)

By formula: HS- + C4H10O = (HS- • C4H10O)

Quantity Value Units Method Reference Comment
Δr16.80 ± 0.30kcal/molTDAsSieck and Meot-ner, 1989gas phase; B,M
Quantity Value Units Method Reference Comment
Δr19.9cal/mol*KPHPMSSieck and Meot-ner, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr10.9 ± 1.2kcal/molTDAsSieck and Meot-ner, 1989gas phase; B

Nitrogen oxide anion + 2-Propanol, 2-methyl- = (Nitrogen oxide anion • 2-Propanol, 2-methyl-)

By formula: NO2- + C4H10O = (NO2- • C4H10O)

Quantity Value Units Method Reference Comment
Δr19.60 ± 0.20kcal/molTDAsSieck, 1985gas phase; B,M
Quantity Value Units Method Reference Comment
Δr29.5cal/mol*KPHPMSSieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr10.80 ± 0.30kcal/molTDAsSieck, 1985gas phase; B

cyclopentadienide anion + 2-Propanol, 2-methyl- = (cyclopentadienide anion • 2-Propanol, 2-methyl-)

By formula: C5H5- + C4H10O = (C5H5- • C4H10O)

Quantity Value Units Method Reference Comment
Δr17.0 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr32.0cal/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr7.4 ± 1.0kcal/molTDAsMeot-ner, 1988gas phase; B

Sodium ion (1+) + 2-Propanol, 2-methyl- = (Sodium ion (1+) • 2-Propanol, 2-methyl-)

By formula: Na+ + C4H10O = (Na+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr28.0 ± 1.0kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr27.8 ± 1.0kcal/molCIDTRodgers and Armentrout, 1999RCD

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
21.4298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

Fluorine anion + 22-Propanol, 2-methyl- = C8H20FO2-

By formula: F- + 2C4H10O = C8H20FO2-

Quantity Value Units Method Reference Comment
Δr22.00 ± 0.40kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr13.59kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

thiophenoxide anion + 2-Propanol, 2-methyl- = C10H15OS-

By formula: C6H5S- + C4H10O = C10H15OS-

Quantity Value Units Method Reference Comment
Δr14.60 ± 0.10kcal/molTDAsSieck and Meot-ner, 1989gas phase; B
Quantity Value Units Method Reference Comment
Δr7.20 ± 0.50kcal/molTDAsSieck and Meot-ner, 1989gas phase; B

Iodide + 22-Propanol, 2-methyl- = C8H20IO2-

By formula: I- + 2C4H10O = C8H20IO2-

Quantity Value Units Method Reference Comment
Δr11.30 ± 0.40kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr4.32kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

Bromine anion + 22-Propanol, 2-methyl- = C8H20BrO2-

By formula: Br- + 2C4H10O = C8H20BrO2-

Quantity Value Units Method Reference Comment
Δr12.90 ± 0.40kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr5.65kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

Bromine anion + 32-Propanol, 2-methyl- = C12H30BrO3-

By formula: Br- + 3C4H10O = C12H30BrO3-

Quantity Value Units Method Reference Comment
Δr11.60 ± 0.50kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr4.33kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

Bromine anion + 2-Propanol, 2-methyl- = C4H10BrO-

By formula: Br- + C4H10O = C4H10BrO-

Quantity Value Units Method Reference Comment
Δr15.80 ± 0.20kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr8.58kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

Fluorine anion + 32-Propanol, 2-methyl- = C12H30FO3-

By formula: F- + 3C4H10O = C12H30FO3-

Quantity Value Units Method Reference Comment
Δr18.3 ± 1.0kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr7.81kcal/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

C6H5NO2- + 2-Propanol, 2-methyl- = (C6H5NO2- • 2-Propanol, 2-methyl-)

By formula: C6H5NO2- + C4H10O = (C6H5NO2- • C4H10O)

Quantity Value Units Method Reference Comment
Δr16.4kcal/molPHPMSSieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr27.2cal/mol*KPHPMSSieck, 1985gas phase; M

Fluorine anion + 2-Propanol, 2-methyl- = C4H9D10FO-

By formula: F- + C4H10O = C4H9D10FO-

Quantity Value Units Method Reference Comment
Δr25.1 ± 2.0kcal/molIMREWilkinson, Szulejko, et al., 1992gas phase; Reported relative to ROH..F-, 0.5 kcal/mol weaker.; B

1-Propene, 2-methyl- + Water = 2-Propanol, 2-methyl-

By formula: C4H8 + H2O = C4H10O

Quantity Value Units Method Reference Comment
Δr-12.775kcal/molEqkEberz and Lucas, 1934gas phase; solvent: Aqueous; Heat of hydration; ALS

Ketene + 2-Propanol, 2-methyl- = Acetic acid, 1,1-dimethylethyl ester

By formula: C2H2O + C4H10O = C6H12O2

Quantity Value Units Method Reference Comment
Δr-23.49kcal/molCmRice and Greenberg, 1934liquid phase; ALS

2-Propanol, 2-methyl- = 1-Propene, 2-methyl- + Water

By formula: C4H10O = C4H8 + H2O

Quantity Value Units Method Reference Comment
Δr12.6kcal/molEqkTaft and Riesz, 1955liquid phase; ALS

Lithium ion (1+) + 2-Propanol, 2-methyl- = (Lithium ion (1+) • 2-Propanol, 2-methyl-)

By formula: Li+ + C4H10O = (Li+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr42.5 ± 2.4kcal/molCIDTRodgers and Armentrout, 2000RCD

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
70.8300.MN/A 
83. MButler, Ramchandani, et al., 1935 

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedC78, Branched paraffin130.472.1Dallos, Sisak, et al., 2000He; Column length: 3.3 m
PackedC78, Branched paraffin130.471.0Reddy, Dutoit, et al., 1992Chromosorb G HP; Column length: 3.3 m
CapillarySE-3080.500.Tarjan, Nyiredy, et al., 1989 
CapillarySE-3080.500.Haken and Korhonen, 1985Column length: 25. m; Column diameter: 0.33 mm
CapillarySE-3080.500.Haken, Madden, et al., 1985N2; Column length: 25. m; Column diameter: 0.33 mm
PackedSE-30150.515.Tiess, 1984Ar, Gas Chrom Q (80-100 mesh); Column length: 3. m
PackedSE-30100.493.Winskowski, 1983Gaschrom Q; Column length: 2. m
PackedPorapack Q200.521.Goebel, 1982N2
PackedSE-30150.491.Haken, Nguyen, et al., 1979Celatom AW silanized; Column length: 3.7 m
PackedApiezon L120.487.Bogoslovsky, Anvaer, et al., 1978Celite 545
PackedApiezon L160.488.Bogoslovsky, Anvaer, et al., 1978Celite 545
PackedApiezon L130.472.Bogoslovsky, Anvaer, et al., 1978 
PackedApiezon L70.488.Bogoslovsky, Anvaer, et al., 1978 
PackedApolane70.478.1Riedo, Fritz, et al., 1976He, Chromosorb; Column length: 2.4 m
PackedApiezon M130.493.Golovnya and Garbuzov, 1974N2, Chromosorb W; Column length: 2.1 m
PackedApiezon L100.524.Wagaman and Smith, 1971CH4; Column length: 3. m
PackedSE-30100.527.Zarazir, Chovin, et al., 1970Chromosorb W; Column length: 2. m
PackedDC-200100.514.Rohrschneider, 1966Column length: 4. m
PackedSqualane100.471.Rohrschneider, 1966Column length: 5. m
PackedApiezon L100.493.Rohrschneider, 1966Column length: 5. m
PackedApiezon L130.472.von Kováts, 1958Celite (40:60 Gewichtsverhaltnis)
PackedApiezon L70.488.von Kováts, 1958Celite (40:60 Gewichtsverhaltnis)

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH-100523.5Haagen-Smit Laboratory, 1997He; Column length: 100. m; Column diameter: 0.2 mm; Program: 5C(10min) => 5C/min => 50C(48min) => 1.5C/min => 195C(91min)

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryOV-35160.930.Haken and Korhonen, 1985N2; Column length: 25. m; Column diameter: 0.32 mm
CapillaryOV-35180.942.Haken and Korhonen, 1985N2; Column length: 25. m; Column diameter: 0.32 mm
CapillaryOV-35160.930.Haken, Madden, et al., 1985N2; Column length: 25. m; Column diameter: 0.32 mm
CapillaryOV-35180.942.Haken, Madden, et al., 1985N2; Column length: 25. m; Column diameter: 0.32 mm
PackedCarbowax 20M75.934.Goebel, 1982N2, Kieselgur (60-100 mesh); Column length: 2. m
PackedPEG-2000120.897.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000150.867.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000152.906.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000179.881.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000200.863.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedCarbowax 20M100.882.Zarazir, Chovin, et al., 1970Chromosorb W; Column length: 2. m
PackedPolyethylene Glycol 4000100.902.Bonastre and Grenier, 1968Chromosorb P; Column length: 6. m
PackedPolyethylene Glycol 4000120.891.Bonastre and Grenier, 1968Chromosorb P; Column length: 6. m
PackedPolyethylene Glycol 4000140.879.Bonastre and Grenier, 1968Chromosorb P; Column length: 6. m
PackedPolyethylene Glycol 400080.914.Bonastre and Grenier, 1968Chromosorb P; Column length: 6. m
PackedCarbowax 20M100.875.Rohrschneider, 1966Column length: 2. m

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-5526.3Xu, van Stee, et al., 200330. m/0.25 mm/1. μm, He, 2.5 K/min; Tstart: 50. C; Tend: 200. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
PackedSE-30518.Peng, Ding, et al., 1988Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min)

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillarySupelcowax-10900.Elmore, Nisyrios, et al., 200560. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min; Tend: 280. C
CapillaryOV-351880.Korhonen, 19846. K/min; Column length: 25. m; Column diameter: 0.32 mm; Tstart: 50. C

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedSynachrom150.531.Dufka, Malinsky, et al., 1971Helium, Synachrom (60-80 mesh); Column length: 1.5 m
PackedSynachrom150.534.Dufka, Malinsky, et al., 1971Helium, Synachrom (60-80 mesh); Column length: 1.5 m

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH519.Supelco, 2012100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min
CapillaryDB-5MS507.3Shoenmakers, Oomen, et al., 200030. m/0.25 mm/0.25 μm, He, 40. C @ 1. min, 3. K/min; Tend: 250. C
CapillaryOV-101500.Anker, Jurs, et al., 19902. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-5530.Miyazaki, Plotto, et al., 201160. m/0.25 mm/1.00 μm, Helium; Program: 40 0C 4 0C/min -> 230 0C 100 0C/min -> 260 0C (11.7 min)
CapillarySE-30500.Vinogradov, 2004Program: not specified
CapillarySE-30512.Vinogradov, 2004Program: not specified
CapillaryDB-1514.Yen and Lin, 199960. m/0.32 mm/0.25 μm, N2; Program: 40 0C (10 min) 40 - 80 0C at 2 0C/min 80 - 200 0C at 5 0C/min 200 0C (10 min)
CapillarySPB-1509.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillaryDB-1512.Ciccioli, Cecinato, et al., 199460. m/0.32 mm/0.25 μm; Program: not specified
CapillaryDB-1512.Ciccioli, Brancaleoni, et al., 199360. m/0.32 mm/0.25 μm; Program: 3 min at 5 C; 5 - 50 C at 3 deg/min; 50 - 220 C at 5 deg/min
CapillarySPB-1509.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySPB-1512.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: not specified
CapillaryCP Sil 8 CB518.Weller and Wolf, 198940. m/0.25 mm/0.25 μm, He; Program: 30 0C (1 min) 15 0C/min -> 45 0C 3 0C/min -> 120 0C
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.543.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1512.Ramsey and Flanagan, 1982Program: not specified

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCarbowax 20M871.Anker, Jurs, et al., 19902. K/min; Column length: 80. m; Column diameter: 0.2 mm; Tstart: 70. C; Tend: 170. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySOLGel-Wax897.Johanningsmeier and McFeeters, 201130. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 5 0C/min -> 140 0C 10 0C/min -> 250 0C (3 min)
CapillaryDB-Wax920.Kadar, Juan-Borras, et al., 201060. m/0.32 mm/1.0 μm, Helium; Program: 40 0C (2 min) 4 0C/min -> 190 0C (11 min) 8 0C/min -> 220 0C (8 min)
CapillaryCarbowax 20M871.Vinogradov, 2004Program: not specified
CapillaryDB-Wax916.Peng, Yang, et al., 1991Program: not specified
CapillaryCarbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc.934.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryCarbowax 20M875.Ramsey and Flanagan, 1982Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Wiberg and Hao, 1991
Wiberg, K.B.; Hao, S., Enthalpies of hydration of alkenes. 4. Formation of acyclic tert-alcohols, J. Org. Chem., 1991, 56, 5108-5110. [all data]

Skinner and Snelson, 1960
Skinner, H.A.; Snelson, A., The heats of combustion of the four isomeric butyl alcohols, Trans. Faraday Soc., 1960, 56, 1776-1783. [all data]

Taft and Riesz, 1955
Taft, R.W., Jr.; Riesz, P., Thermodynamic properties for the system isobutene-t-butyl alcohol, J. Am. Chem. Soc., 1955, 77, 902-904. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Beynon E.T., 1963
Beynon E.T., Jr., The thermodynamic properties of 2-methyl-2-propanol, J. Phys. Chem., 1963, 67, 2761-2765. [all data]

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Stromsoe E., 1970
Stromsoe E., Heat capacity of alcohol vapors at atmospheric pressure, J. Chem. Eng. Data, 1970, 15, 286-290. [all data]

Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M., Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]

Parks and Anderson, 1926
Parks, G.S.; Anderson, C.T., Thermal data on organic compounds. III. The heat capacities, entropies and free energies of tertiary butyl alcohol, mannitol, erythritol and normal butyric acid, J. Am. Chem. Soc., 1926, 48, 1506-1512. [all data]

Raley, Rust, et al., 1948
Raley, J.H.; Rust, F.F.; Vaughan, W.E., Decompositions of Di-t-alkyl peroxides. I. Kinetics, J. Am. Chem. Soc., 1948, 70, 88-94. [all data]

Oetting F.L., 1963
Oetting F.L., The heat capacity and entropy of 2-methyl-2-propanol from 15 to 330 K, J. Phys. Chem., 1963, 67, 2757-2761. [all data]

Caceres-Alonso, Costas, et al., 1988
Caceres-Alonso, M.; Costas, M.; Andreoli-Ball, L.; Patterson, D., Steric effects on the self-association of branched and cyclic alcohols in inert solvents. Apparent heat capacities of secondary and tertiary alcohols in hydrocarbons, Can. J. Chem., 1988, 66, 989-998. [all data]

Okano, Ogawa, et al., 1988
Okano, T.; Ogawa, H.; Murakami, S., Molar excess volumes, isentropic compressions, and isobaric heat capacities of methanol-isomeric butanol systems at 298.15 K, Can. J. Chem., 1988, 66, 713-717. [all data]

De Visser, Perron, et al., 1977
De Visser, C.; Perron, G.; Desnoyers, J.E., Volumes and heat capacities of ternary aqueous systems at 25°C. Mixtures of urea, tert-butyl alcohol, N,N-dimethylformamide, and water, J. Amer. Chem. Soc., 1977, 99, 5894-5900. [all data]

De Visser, Perron, et al., 1977, 2
De Visser, C.; Perron, G.; Desnoyers, J.E., The heat capacities, volumes and expansibilities of tert-butyl alcohol - water mixtures form 6 to 65°C, Can. J. Chem., 1977, 55, 856-762. [all data]

Murthy and Subrahmanyam, 1977
Murthy, N.M.; Subrahmanyam, S.V., Behaviour of excess heat capacity of aqueous non-electrolytes, Indian J. Pure Appl. Phys., 1977, 15, 485-489. [all data]

Skold, Suurkuusk, et al., 1976
Skold, R.; Suurkuusk, J.; Wadso, I., Thermochemistry of solutions of biochemical model compounds. 7. Aqueous solutions of some amides, t-butanol, and pentanol, J. Chem. Thermodynam., 1976, 8, 1075-1080. [all data]

Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Oetting, 1963
Oetting, F.L., The heat capacity and entropy of 2-methyl-2-propanol from 15 to 330!31k, J. Phys. Chem., 1963, 67, 2757-61. [all data]

Parks and Anderson, 1926, 2
Parks, G.S.; Anderson, C.T., Thermal data on organic compounds. III. The heat capacities, entropies and free energies of tertiary butyl alcohol, mannitol, erythritol and normal butyric acid, J. Am. Chem. Soc., 1926, 48, 1506-12. [all data]

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Ambrose and Townsend, 1963
Ambrose, D.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds IX. The Critical Properties and Vapor Pressures Above Five Atmospheres of Six Aliphatic Alcohols, J. Chem. Soc., 1963, 54, 3614-25. [all data]

Krone and Johnson, 1956
Krone, L.H.; Johnson, R.C., Thermodynamic Properties of tert-Butyl ALcohol, AIChE J., 1956, 2, 552-4. [all data]

Pawlewski, 1883
Pawlewski, B., Critical temperatures of some liquids, Ber. Dtsch. Chem. Ges., 1883, 16, 2633-36. [all data]

Ortega, Espiau, et al., 2003
Ortega, Juan; Espiau, Fernando; Postigo, Miguel, Isobaric Vapor-Liquid Equilibria and Excess Quantities for Binary Mixtures of an Ethyl Ester + tert -Butanol and a New Approach to VLE Data Processing, J. Chem. Eng. Data, 2003, 48, 4, 916-924, https://doi.org/10.1021/je0202073 . [all data]

Aucejo, Loras, et al., 1999
Aucejo, Antonio; Loras, Sonia; Muñoz, Rosa; Ordoñez, Luis Miguel, Isobaric vapor--liquid equilibrium for binary mixtures of 2-methylpentane+ethanol and +2-methyl-2-propanol, Fluid Phase Equilibria, 1999, 156, 1-2, 173-183, https://doi.org/10.1016/S0378-3812(99)00029-1 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Ambrose, Counsell, et al., 1970
Ambrose, D.; Counsell, J.F.; Davenport, A.J., The use of Chebyshev polynomials for the representation of vapour pressures between the triple point and the critical point, The Journal of Chemical Thermodynamics, 1970, 2, 2, 283-294, https://doi.org/10.1016/0021-9614(70)90093-5 . [all data]

Beynon and McKetta, 1963
Beynon, Eugene T.; McKetta, John J., THE THERMODYNAMIC PROPERTIES OF 2-METHYL-2-PROPANOL, J. Phys. Chem., 1963, 67, 12, 2761-2765, https://doi.org/10.1021/j100806a060 . [all data]

Majer, Svoboda, et al., 1984
Majer, V.; Svoboda, V.; Hynek, V., On the enthalpy of vaporization of isomeric butanols, J. Chem. Thermodyn., 1984, 16, 1059-1066. [all data]

Sachek, Peshchenko, et al., 1982
Sachek, A.I.; Peshchenko, A.D.; Markovnik, V.S.; Ral'ko, O.V.; Andreevskii, D.N.; Leont'eva, A.A., Termodin. Org. Soedin., 1982, 94. [all data]

Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]

Brown, Fock, et al., 1969
Brown, I.; Fock, W.; Smith, F., The thermodynamic properties of solutions of normal and branched alcohols in benzene and n-hexane, The Journal of Chemical Thermodynamics, 1969, 1, 3, 273-291, https://doi.org/10.1016/0021-9614(69)90047-0 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Ambrose and Townsend, 1963, 2
Ambrose, D.; Townsend, R., 681. Thermodynamic properties of organic oxygen compounds. Part IX. The critical properties and vapour pressures, above five atmospheres, of six aliphatic alcohols, J. Chem. Soc., 1963, 3614, https://doi.org/10.1039/jr9630003614 . [all data]

Parks and Barton, 1928
Parks, George S.; Barton, Bernard, VAPOR PRESSURE DATA FOR ISOPROPYL ALCOHOL AND TERTIARY BUTYL ALCOHOL, J. Am. Chem. Soc., 1928, 50, 1, 24-26, https://doi.org/10.1021/ja01388a004 . [all data]

Ambrose and Townsend, 1963, 3
Ambrose, D.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds. Part 9. The Critical Properties and Vapour Pressures, above Five Atmospheres, of Six Aliphatic Alcohols, J. Chem. Soc., 1963, 3614-3625, https://doi.org/10.1039/jr9630003614 . [all data]

Biddiscombe, Collerson, et al., 1963
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S., Thermodynamic Properties of Organic Oxygen Compounds. Part 8. Purification and Vapor Pressures of the Propyl and Butyl Alcohols, J. Chem. Soc., 1963, 1954-1957, https://doi.org/10.1039/jr9630001954 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Hiraoka and Mizuse, 1987
Hiraoka, K.; Mizuse, S., Gas-Phase Solvation of Cl- with H2O, CH3OH, C2H4OH, i-C3H7OH, n-C3H7OH, and t-C4H9OH, Chem. Phys., 1987, 118, 3, 457, https://doi.org/10.1016/0301-0104(87)85078-4 . [all data]

Sieck, 1985
Sieck, L.W., Thermochemistry of Solvation of NO2- and C6H5NO2- by Polar Molecules in the Vapor Phase. Comparison with Cl- and Variation with Ligand Structure., J. Phys. Chem., 1985, 89, 25, 5552, https://doi.org/10.1021/j100271a049 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Kebarle, 1977
Kebarle, P., Ion Thermochemistry and Solvation from Gas Phase Ion Equilibria, Ann. Rev. Phys. Chem., 1977, 28, 1, 445, https://doi.org/10.1146/annurev.pc.28.100177.002305 . [all data]

Yamdagni and Kebarle, 1971
Yamdagni, R.; Kebarle, P., Hydrogen bonding energies to negative ions from gas phase measurements of ionic equilibria, J. Am. Chem. Soc., 1971, 93, 7139. [all data]

Bogdanov, Peschke, et al., 1999
Bogdanov, B.; Peschke, M.; Tonner, D.S.; Szulejko, J.E.; McMahon, T.B., Stepwise solvation of halides by alcohol molecules in the gas phase, Int. J. Mass Spectrom., 1999, 187, 707-725, https://doi.org/10.1016/S1387-3806(98)14180-5 . [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Ramond, Davico, et al., 2000
Ramond, T.M.; Davico, G.E.; Schwartz, R.L.; Lineberger, W.C., Vibronic structure of alkoxy radicals via photoelectron spectroscopy, J. Chem. Phys., 2000, 112, 3, 1158-1169, https://doi.org/10.1063/1.480767 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

DeTuri and Ervin, 1999
DeTuri, V.F.; Ervin, K.M., Competitive threshold collision-induced dissociation: Gas-phase acidities and bond dissociation energies for a series of alcohols, J. Phys. Chem. A, 1999, 103, 35, 6911-6920, https://doi.org/10.1021/jp991459m . [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Caldwell, Rozeboom, et al., 1984
Caldwell, G.; Rozeboom, M.D.; Kiplinger, J.P.; Bartmess, J.E., Anion-alcohol hydrogen bond strengths in the gas phase, J. Am. Chem. Soc., 1984, 106, 4660. [all data]

Paul and Kebarle, 1990
Paul, G.J.C.; Kebarle, P., Thermodynamics of the Association Reactions OH- - H2O = HOHOH- and CH3O- - CH3OH = CH3OHOCH3- in the Gas Phase, J. Phys. Chem., 1990, 94, 12, 5184, https://doi.org/10.1021/j100375a076 . [all data]

Meot-ner and Sieck, 1986
Meot-ner, M.; Sieck, L.W., Relative acidities of water and methanol, and the stabilities of the dimer adducts, J. Phys. Chem., 1986, 90, 6687. [all data]

Meot-Ner(Mautner), 1986
Meot-Ner(Mautner), M., Comparative Stabilities of Cationic and Anionic Hydrogen-Bonded Networks. Mixed Clusters of Water-Methanol, J. Am. Chem. Soc., 1986, 108, 20, 6189, https://doi.org/10.1021/ja00280a014 . [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E., A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase, Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]

Meot-Ner, 1984
Meot-Ner, (Mautner)M., The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects, J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015 . [all data]

Caldwell and Kebarle, 1984
Caldwell, G.; Kebarle, P., Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas phase equilibria measurements, J. Am. Chem. Soc., 1984, 106, 967. [all data]

Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids, J. Am. Chem. Soc., 1987, 109, 6230. [all data]

Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P., Hydration of CN-, NO2-, NO3-, and HO- in the gas phase, Can. J. Chem., 1971, 49, 3308. [all data]

Sieck and Meot-ner, 1989
Sieck, L.W.; Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 8. RS-..HOR Bond Strengths. Correlation with Acidities., J. Phys. Chem., 1989, 93, 4, 1586, https://doi.org/10.1021/j100341a079 . [all data]

Meot-ner, 1988
Meot-ner, M., The Ionic Hydrogen Bond and Solvation. 7. Interaction Energies of Carbanions with Solvent Molecules, J. Am. Chem. Soc., 1988, 110, 12, 3858, https://doi.org/10.1021/ja00220a022 . [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Rodgers and Armentrout, 1999
Rodgers, M.T.; Armentrout, P.B., Absolute Binding Energies of Sodium Ions to Short-Chain Alcohols, CnH2n+2O, n=1-4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, 1999, 4955. [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

Wilkinson, Szulejko, et al., 1992
Wilkinson, F.E.; Szulejko, J.E.; Allison, C.E.; Mcmahon, T.B., Fourier Transform Ion Cyclotron Resonance Investigation of the Deuterium Isotope Effect on Gas Phase Ion/Molecule Hydrogen Bonding Interactions in Alcohol-Fluoride Adduct Ions, Int. J. Mass Spectrom., 1992, 117, 487-505, https://doi.org/10.1016/0168-1176(92)80110-M . [all data]

Eberz and Lucas, 1934
Eberz, W.F.; Lucas, H.J., The hydration of unsaturated compounds. II. The equilibrium between i-butene and t-butanol and the free energy of hydration of i-butene, J. Am. Chem. Soc., 1934, 56, 1230-1234. [all data]

Rice and Greenberg, 1934
Rice, F.O.; Greenberg, J., Ketene. III. Heat of formation and heat of reaction with alcohols, J. Am. Chem. Soc., 1934, 38, 2268-2270. [all data]

Butler, Ramchandani, et al., 1935
Butler, J.A.V.; Ramchandani, C.N.; Thomson, D.W., The Solubility of Non-Electrolytes. Part 1. The Free Energy of Hydration of Some Alphatic Alcohols, J. Chem. Soc., 1935, 280-285, https://doi.org/10.1039/jr9350000280 . [all data]

Dallos, Sisak, et al., 2000
Dallos, A.; Sisak, A.; Kulcsár, Z.; Kováts, E., Pair-wise interactions by gas chromatography VII. Interaction free enthalpies of solutes with secondary alcohol groups, J. Chromatogr. A, 2000, 904, 2, 211-242, https://doi.org/10.1016/S0021-9673(00)00908-0 . [all data]

Reddy, Dutoit, et al., 1992
Reddy, K.S.; Dutoit, J.-Cl.; Kovats, E. sz., Pair-wise interactions by gas chromatography. I. Interaction free enthalpies of solutes with non-associated primary alcohol groups, J. Chromatogr., 1992, 609, 1-2, 229-259, https://doi.org/10.1016/0021-9673(92)80167-S . [all data]

Tarjan, Nyiredy, et al., 1989
Tarjan, G.; Nyiredy, Sz.; Gyor, M.; Lombosi, E.R.; Lombosi, T.S.; Budahegyi, M.V.; Meszaros, S.Y.; Takacs, J.M., Review. Thirtieth Anniversary of the Retention Index According to Kovats in Gas-Liquid Chromatography, J. Chromatogr., 1989, 472, 1-92, https://doi.org/10.1016/S0021-9673(00)94099-8 . [all data]

Haken and Korhonen, 1985
Haken, J.K.; Korhonen, I.O.O., Gas-liquid chromatography of homologous esters. XXIX. Propanoyl and monochlorpropanoyl esters of lower saturated branched-chain and unsaturated alcohols, J. Chromatogr., 1985, 324, 343-353, https://doi.org/10.1016/S0021-9673(01)81333-9 . [all data]

Haken, Madden, et al., 1985
Haken, J.K.; Madden, B.G.; Korhonen, I.O.O., Gas chromatography of homologous esters. XXXI. Butanoyl and monochlorobutanoyl esters of lower saturated branched chain and unsaturated alcohols on SE-30 and OV-351 capillary columns, J. Chromatogr., 1985, 325, 61-73, https://doi.org/10.1016/S0021-9673(00)96008-4 . [all data]

Tiess, 1984
Tiess, D., Gaschromatographische Retentionsindices von 125 leicht- bis mittelflüchtigen organischen Substanzen toxikologisch-analytischer Relevanz auf SE-30, Wiss. Z. Wilhelm-Pieck-Univ. Rostock Math. Naturwiss. Reihe, 1984, 33, 6-9. [all data]

Winskowski, 1983
Winskowski, J., Gaschromatographische Identifizierung von Stoffen anhand von Indexziffem und unterschiedlichen Detektoren, Chromatographia, 1983, 17, 3, 160-165, https://doi.org/10.1007/BF02271041 . [all data]

Goebel, 1982
Goebel, K.-J., Gaschromatographische Identifizierung Niedrig Siedender Substanzen Mittels Retentionsindices und Rechnerhilfe, J. Chromatogr., 1982, 235, 1, 119-127, https://doi.org/10.1016/S0021-9673(00)95793-5 . [all data]

Haken, Nguyen, et al., 1979
Haken, J.K.; Nguyen, A.; Wainwright, M.S., Application of linear extrathermodynamic relationships to alcohols, aldehydes, ketones, amd ethoxy alcohols, J. Chromatogr., 1979, 179, 1, 75-85, https://doi.org/10.1016/S0021-9673(00)80658-5 . [all data]

Bogoslovsky, Anvaer, et al., 1978
Bogoslovsky, Yu.N.; Anvaer, B.I.; Vigdergauz, M.S., Chromatographic constants in gas chromatography (in Russian), Standards Publ. House, Moscow, 1978, 192. [all data]

Riedo, Fritz, et al., 1976
Riedo, F.; Fritz, D.; Tarján, G.; Kováts, E.Sz., A tailor-made C87 hydrocarbon as a possible non-polar standard stationary phase for gas chromatography, J. Chromatogr., 1976, 126, 63-83, https://doi.org/10.1016/S0021-9673(01)84063-2 . [all data]

Golovnya and Garbuzov, 1974
Golovnya, R.V.; Garbuzov, V.G., Effect of heteroatom in aliphatic sulfur- and oxygen-containing compounds on the values of the retention indices in gas chromatography, Izv. Akad. Nauk SSSR Ser. Khim., 1974, 7, 1519-1521. [all data]

Wagaman and Smith, 1971
Wagaman, K.L.; Smith, T.G., Use of hydrocarbons as carrier gases in GLC, J. Chromatogr. Sci., 1971, 9, 4, 241-244, https://doi.org/10.1093/chromsci/9.4.241 . [all data]

Zarazir, Chovin, et al., 1970
Zarazir, D.; Chovin, P.; Guiochon, G., Identification of hydroxylic compounds and their derivatives by gas chromatography, Chromatographia, 1970, 3, 4, 180-195, https://doi.org/10.1007/BF02269018 . [all data]

Rohrschneider, 1966
Rohrschneider, L., Eine methode zur charakterisierung von gaschromatographischen trennflüssigkeiten, J. Chromatogr., 1966, 22, 6-22, https://doi.org/10.1016/S0021-9673(01)97064-5 . [all data]

von Kováts, 1958
von Kováts, E., 206. Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone, Helv. Chim. Acta, 1958, 41, 7, 1915-1932, https://doi.org/10.1002/hlca.19580410703 . [all data]

Haagen-Smit Laboratory, 1997
Haagen-Smit Laboratory, Procedure for the detailed hydrocarbon analysis of gasolines by single column high efficiency (capillary) column gas chromatography, SOP NO. MLD 118, Revision No. 1.1, California Environmental Protection Agency, Air Resources Board, El Monte, California, 1997, 22. [all data]

Anderson, Jurel, et al., 1973
Anderson, A.; Jurel, S.; Shymanska, M.; Golender, L., Gas-liquid chromatography of some aliphatic and heterocyclic mono- and pollyfunctional amines. VII. Retention indices of amines in some polar and unpolar stationary phases, Latv. PSR Zinat. Akad. Vestis Kim. Ser., 1973, 1, 51-63. [all data]

Bonastre and Grenier, 1968
Bonastre, J.; Grenier, P., Contribution à l'étude de la polarité des phases stationnaires en chromatographie gaz-liquide. III. Calcul des coefficients d'activité relatifs et des indices de rétention de quelques alcools aliphatiques, Bull. Soc. Chim. Fr., 1968, 1, 118-125. [all data]

Xu, van Stee, et al., 2003
Xu, X.; van Stee, L.L.P.; Williams, J.; Beens, J.; Adahchour, M.; Vreuls, R.J.J.; Brinkman, U.A.Th.; Lelieveld, J., Comprehensive two-dimensional gas chromatography (GC×GC) measurements of volatile organic compounds in the atmosphere, Atmos. Chem. Phys., 2003, 3, 3, 665-682, https://doi.org/10.5194/acp-3-665-2003 . [all data]

Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C., Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns, J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8 . [all data]

Elmore, Nisyrios, et al., 2005
Elmore, J.S.; Nisyrios, I.; Mottram, D.S., Analysis of the headspace aroma compounds of walnuts (Juglans regia L.), Flavour Fragr. J., 2005, 20, 5, 501-506, https://doi.org/10.1002/ffj.1477 . [all data]

Korhonen, 1984
Korhonen, I.O.O., Gas-Liquid Chromatographic Analyses. XXV. Branched-Chain C3-C5 Alkyl Esters of Halogenated Acetic Acids, J. Chromatogr., 1984, 288, 51-69, https://doi.org/10.1016/S0021-9673(01)93681-7 . [all data]

Dufka, Malinsky, et al., 1971
Dufka, O.; Malinsky, J.; Vladyka, J., Sorpcni materialy pro plynovou chromatographii - III, Chemicky promysl., 1971, 21/46, 9, 459-463. [all data]

Supelco, 2012
Supelco, CatalogNo. 24160-U, Petrocol DH Columns. Catalog No. 24160-U, 2012, retrieved from http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Datasheet/1/w97949.Par.0001.File.tmp/w97949.pdf. [all data]

Shoenmakers, Oomen, et al., 2000
Shoenmakers, P.J.; Oomen, J.L.M.M.; Blomberg, J.; Genuit, W.; van Velzen, G., Comparison of comprehensive two-dimensional gas chromatography and gas chromatography-mass spectrometry for the characterization of complex hydrocarbon mixtures, J. Chromatogr. A, 2000, 892, 1-2, 29-46, https://doi.org/10.1016/S0021-9673(00)00744-5 . [all data]

Anker, Jurs, et al., 1990
Anker, L.S.; Jurs, P.C.; Edwards, P.A., Quantitative structure-retention relationship studies of odor-active aliphatic compounds with oxygen-containing functional groups, Anal. Chem., 1990, 62, 24, 2676-2684, https://doi.org/10.1021/ac00223a006 . [all data]

Miyazaki, Plotto, et al., 2011
Miyazaki, T.; Plotto, A.; Goodner, K.; Gmitter F.G., Distribution of aroma volatile compounds in tangerine hybrids and proposed inheritance, J. Sci. Food Agric., 2011, 91, 3, 449-460, https://doi.org/10.1002/jsfa.4205 . [all data]

Vinogradov, 2004
Vinogradov, B.A., Production, composition, properties and application of essential oils, 2004, retrieved from http://viness.narod.ru. [all data]

Yen and Lin, 1999
Yen, G.-C.; Lin, H.-T., Changes in volatile flavor components of guava juice with high-pressure treatment and heat processing and during storage, J. Agric. Food Chem., 1999, 47, 5, 2082-2087, https://doi.org/10.1021/jf9810057 . [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Ciccioli, Cecinato, et al., 1994
Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Brachetti, A.; Frattoni, M.; Sparapani, R., Composition and Distribution of Polar and Non-Polar VOCs in Urban, Rural, Forest and Remote Areas, Eur Commission EUR, 1994, 549-568. [all data]

Ciccioli, Brancaleoni, et al., 1993
Ciccioli, P.; Brancaleoni, E.; Cecinato, A.; Sparapani, R.; Frattoni, M., Identification and determination of biogenic and anthropogenic volatile organic compounds in forest areas of Northern and Southern Europe and a remote site of the Himalaya region by high-resolution gas chromatography-mass spectrometry, J. Chromatogr., 1993, 643, 1-2, 55-69, https://doi.org/10.1016/0021-9673(93)80541-F . [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Weller and Wolf, 1989
Weller, J.-P.; Wolf, M., Massenspektroskopie und Headspace-GC, Beitr. Gerichtl. Med., 1989, 47, 525-532. [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J., Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse, J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5 . [all data]

Johanningsmeier and McFeeters, 2011
Johanningsmeier, S.D.; McFeeters, R.F., Detection of volatile spoilage metabolites in fermented cucumbers using nontargeted, comprehensive 2-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGCxTOFMS), J. Food Sci., 2011, 76, 1, c168-c177, https://doi.org/10.1111/j.1750-3841.2010.01918.x . [all data]

Kadar, Juan-Borras, et al., 2010
Kadar, M.; Juan-Borras, M.; Hellebrandova, M.; Domenech, E.; Escriche, I., Volatile fraction composition of Acacia (Robinia pseudoacacia) honey from Romania, Spain, and Check Republic, Bull. USAMV Agriculture, 2010, 67, 2, 259-265. [all data]

Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F., Prediction of rentention idexes. II. Structure-retention index relationship on polar columns, J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas Chromatography, References