Dihelium


Constants of diatomic molecules

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through November, 1976

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 4He2
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
RydbergRydberg series of npπ 3Πg levels (b,e,i,l,p,r,s,t,u,...)
ν 1 = 34302.20 - R/n=0.071)2, n=2...17
Ginter and Ginter, 1968; Rosen, 1970
Rydberg series of npσ 3Σg+ levels (c,g,k',n,p',r',s',t',...)
ν 1 = 34302.20 - R/n=0.777)2, n=3...12
Ginter and Ginter, 1968; Rosen, 1970
u 3Πg 10pπ 177291 [1628.69] 2Z (35.25)  7.212 2 0.222 2  [0.000503] 2  1.081 u → a R 33189.16 Z
Ginter and Ginter, 1968
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
t' 3Σg+ 10pσ [177969]    [8.27] 3      t' → a V 33026.6 Z
Ginter and Ginter, 1968
t 3Πg 9pπ 177027 [1629.15] 4 Z (35.25)  7.212 4 0.230 4  [0.000507] 4  1.081 t → a R 32925.96 Z
Ginter and Ginter, 1968
s' 3Σg+ 9pσ [177636]    [8.04] 3      s' → a V 32693.2 Z
Ginter and Ginter, 1968
s 3Πg 8pπ 176658 [1629.30] 5 Z (35.25)  7.213 5 0.2234 5  0.00051 5  1.0806 s → a R 32556.66 Z
Ginter and Ginter, 1968
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
r' 3Σg+ 8pσ [177154]    [7.78] 3      r' → a V 32211.7 Z
Ginter and Ginter, 1968
r 3Πg 7pπ 176117 (1700.56) 6 (35.25)  [7.1044] 6 6  [0.000508] 6  [1.0889] r → d R 11625.3 Z
Rosen, 1970
176117          r → a R 32016.56 Z
Ginter and Ginter, 1968
p' 3Σg+ 7pσ [176421]    [7.543] 3      p' → a 31478.6 Z
Ginter and Ginter, 1968
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
q 3Δu 6dδ [176195]    [7.092] 7   [0.00050] 7  [1.0898] q → c V 20365
Dieke, 1929; Rosen, 1970
           q → b V 26483
Dieke, 1929; Rosen, 1970
q 3Πu 6dπ [(176169)]          q → c R (20330)
Dieke, 1929; Rosen, 1970
           q → b R (26466)
Dieke, 1929; Rosen, 1970
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
q 3Σu+ 6dσ [176120]       [] 7   q → c R 20288
Dieke, 1929; Rosen, 1970
           q → b R 26409
p 3Πg 6pπ 175281 1701.18 Z 35.35  7.220 8 0.224  0.000514  1.0801 p → d R 10788.68 Z
Rosen, 1970
175281          p → a R 31179.93 Z
Ginter and Ginter, 1968
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
o 3Σu+ 6sσ [176001]    [7.109]   [0.00051]  [1.0885] o → c V 20168.8 Z
missing citation
[176001]          o → b R 26290.3 Z
Dieke, Imanishi, et al., 1929; Rosen, 1970
n 3Σg+ 6pσ 174389 [1619.52] Z (36.5)  7.4754 9 0.2490  [0.000721] 10  1.0615 n → a 30283.26 Z
Jevons, 1932; Orth and Ginter, 1976
m 3Δu 5dδ [174863]    [7.09] 11     [1.091] m → c V (19039)
Rosen, 1970
           m → b V (25152)
Rosen, 1970
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
m 3Πu 5dπ 174778    [7.07] 12      m → c R (18944)
Rosen, 1970
           m → b R (25070)
Rosen, 1970
m 3Σu+ 5dσ [174730]          m → c R 18899
Rosen, 1970
           m → b R 25019
Rosen, 1970
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
l 3Πg 5pπ 173884 [1633.96] 13 Z (35.25)  7.226 13 0.222 13  [0.000512] 13  1.0797 l → d R 9393.9 Z
Rosen, 1970
            29785.31 Z
Ginter and Ginter, 1968
k 3Σu+ 5sσ (173698) [1635.3] Z   7.232 0.23    1.079 k → c V 18683.5 Z
Rosen, 1970
           k → b R 24804.8 Z
Rosen, 1970
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
k' 3Σg+ 5pσ 172236 1686.90 Z 38.10  7.379 14 0.349 15  [5.8E-4]  1.0684 k' → a R 28127.58 Z
Orth and Ginter, 1976
j 3Δu 4dδ 171573 1702.24 16Z 35.07  7.2088 16 0.2248 17  5.2E-4 16  1.0810 j → c V 16583.18 16Z
Brown and Ginter, 1973
           j → b V 22704.5 16Z
Brown and Ginter, 1973
j 3Πu 4dπ 171402 1680.94 16 Z 40.81  7.1860 16 0.2296 18  5.4E-4 16  1.0827 j → c R 16400.69 16 Z
Brown and Ginter, 1973
           j → b R 22522.0 16 Z
Brown and Ginter, 1973
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
j 3Σu+ 4dσ 171323 1669.79 19 39.09        j → c R 16316.54 19 Z
Brown and Ginter, 1973
j 3Σu+ 4dσ 20           j → b R 22437.8 19 Z
Brown and Ginter, 1973
i 3Πg 4pπ 171290 [1637.94] 21Z (35.25)  7.242 21 0.223 21  [5.14E-4] 21  1.0785 i → a R 27193.01 Z
Ginter and Ginter, 1968; Rosen, 1970
h 3Σu+ 4sσ (170884) [1637.9] Z   7.264 22 0.23  (5.24E-4)  1.077 h → c V 15870.7 Z
Dieke, Imanishi, et al., 1929; Rosen, 1970; Brown and Ginter, 1973
           h → b R 21992.2 Z
Dieke, Imanishi, et al., 1929; Rosen, 1970; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
g 3Σg+ 4pσ 167714 [1589.92] Z (41)  7.2207 0.2478  [5.38E-4] 23  1.0801 g → a R 23597.00 Z
Orth and Ginter, 1976
f 3Δu 3dδ 166303 1706.82 Z 35.10  7.230 24 0.227 25  [5.26e-4] 26  1.0794 f → c V 11316.06 Z
           f → b V 17437.3 Z
missing citation
f 3Πu 3dπ 165877 27 1661.48 Z 44.79  7.136 24 0.235 28  [5.34E-4] 29  1.0865 f → c 10864.53 Z
Ginter, 1966
           f → b 16985.8 Z
Ginter, 1965; Rosen, 1970
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
f 3Σu+ 3dσ 165685 1635.77 Z 44.41  7.071 24 0.246 30  [5.31E-4] 31  1.0914 f → c R 10659.33 Z
           f → b R 106780.6 Z
e 3Πg 3pπ 165598 1721.22 Z 34.970 32  7.2838 33 0.2215 34  5.22E-4  1.0754 ea ↔ 35 R 21507.26 Z
Brown and Ginter, 1971
d 3Σu+ 3pπ 164479 1728.01 Z 36.13 36  7.342 0.2244 37  5.32E-4  1.0712 d → c V 9502.7 Z
Ginter, 1965
           d → b R V 15623.1 Z
missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
c 3Σg+ 3pσ 155053 1583.85 Z 52.74 38  7.0048 0.3105 39  [5.56E-4] 40  1.0966 c → a R 10889.48 Z
Ginter, 1965, 2
b 3Πg 2pπ 148835 1769.07 Z 35.02 41  7.4473 42 0.2196 43  [5.30E-4] 44  1.0635 b → a R 4768.2 Z
Hepner and Herman, 1956; Gloersen and Dieke, 1965
a 3Σu+ 2sσ 144048 1808.56 Z 38.21 45 46  7.7036 47 0.2281 48  5.56E-4 49  1.0457 (a → X) 144935 50
S 1Πg 8pπ [177515]    (7.21) (0.22)    (1.081) S → A R 30228.6 Z
Rosen, 1970
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
R 1Πg 7pπ [176983]    (7.22) (0.22)    (1.080) R → A R 29696.4 Z
Rosen, 1970
P 1Πg 6pπ [176160]    (7.22) (0.22)    (1.080) P → A R 28873.9 Z
Rosen, 1970
M 1Δu 5dδ [(174838)]    [7.09] 51     [1.091] M → B (24050)
Rosen, 1970
M 1Πu 5dπ [(174788)]    [7.07] 52     1.091 M → B (24000)
Rosen, 1970
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
M 1Σu+ 5dσ     [7.07] 52     1.091 M → B (23960)
Rosen, 1970
L 1Πg 5pπ [174794]    (7.23) (0.222)    (1.079) L → A R 27507.8 Z
Rosen, 1970
J 1Δu 4dδ [172416]    [7.097] 53   [5.0E-4]  [1.0894] J → C V 14183.90 53 Z
Brown and Ginter, 1973
           J → B V 21627.9 53 Z
Brown and Ginter, 1973
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
J 1Πu 4dπ [172290]    [7.080] 53   [5.4E-4]  [1.0908] J → C 14058.37 53 Z
Brown and Ginter, 1973
           J → B 21502.4 53 Z
Brown and Ginter, 1973
J 1Σu+ 4dσ [172222] 54          J → C R 13990.32 54 Z
Brown and Ginter, 1973
J 1Σu+ 4dσ 55           J → B R 21434.3 54 Z
Brown and Ginter, 1973
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
I 1Πg 4pπ [172266]    (7.242) (0.223)    (1.078) I → A R 24979.6 Z
Rosen, 1970
H 1Σu+ 4sσ [171951]    (7.26) 56 (0.23)    (1.077) H → C V 13719.5 Z
Rosen, 1970; Brown and Ginter, 1973
           H → B R 21163.5 Z
Rosen, 1970; Brown and Ginter, 1973
F 1Δu 3dδ 166304 1706.59 Z 35.06  7.230 57 0.225 58  [5.20E-4] 59  1.0794 F → B V 16360.9 Z
Ginter, 1965, 3; Ginter, 1966
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
F 1Πu 3dπ 165971 60 1670.87 Z 20.03  7.156 57 0.235  [5.24E-4] 61  1.0849 F → B 16008.3 Z
Ginter, 1965, 3; Ginter, 1966
F 1Σu+ 3dσ (165813) [1564.25] Z (10)  7.098 57 0.246  [5.21E-4] 62  1.0894 F → B R 15837.5 Z
Ginter, 1965, 3; Ginter, 1966
E 1Πg 3pπ 165911 1721.19 Z 34.76 63  7.2705 64 0.2156 65  5.20E-4  1.0764 E → A R 19476.61 Z
Brown and Ginter, 1971
D 1Σu+ 3sσ 165085 1746.43 Z 35.54  7.365 0.2180 66  5.24E-4 67  1.0694 D → B 68 R V 15161.81 Z
Ginter, 1965, 3
           D → X 69 70 
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
C 1Σg+ 3pσ 157415 1653.43 Z 41.04 71  7.052 0.215 72  5.08E-4 73  1.0929 C → A R 10945.50 Z
Ginter, 1965, 2; Rosen, 1970
B 1Πg 2pπ 149914 1765.76 Z 34.39 74  7.403 75 0.216 75  5.02E-4 75  1.0667 (B-A) 3501.5 76
A 1Σu+ 2sσ 146365 77 1861.33 Z 35.28 78  7.7789 0.2166 79  5.44E-4  1.0406 AX ↔ 80 147279 81
Tanaka and Yoshino, 1963; Mies and Smith, 1966; Smith, 1967; Chow, Smith, et al., 1971
X 1Σg+ 0 82         2.97 83  

Notes

1missing note
2Refers to Π-. B0(3Π+) ~ 5.6, strongly affected by l-uncoupling.
3Effective value, strongly affected by l-uncoupling.
4Refers to Π-. B0(3Π+) = 5.87, strongly affected by l-uncoupling.
5Refers to Π-. B0(3Π+) = 6.13, strongly affected by l-uncoupling.
6Constants refer to Π-; B0(3Π+)= 6.375 affected by l-uncoupling. v=1 is perturbed; approximate deperturbed constants for Π-: B1 = 6.886, ΔG(1/2) = 1629.7.
7Strong l-uncoupling. The rotational constants Dieke, 1929 refer to the average of Π- and Δ-.
8Refers to Π-. B0(3Π+) = 6.630 affected by l-uncoupling.
9Several small accidental perturbations.
10D1 = 6.82E-4, H0 = 14.2E-8, H1 ~ -26E-8.
11Average of Π- and Δ- as given by Rosen, 1970.
12Average of Σ+, Π+, Δ+ as given by Rosen, 1970.
13Refers to Π-.
14Several small accidental perturbations.
15missing note
16The vibrational and rotational constants refer to Π- and Δ- which are less affected by l-uncoupling.
17missing note
18missing note
19Constants refer to N'=1.
20Strongly perturbed by l-uncoupling and by interaction with the h state. 22
21Constants refer to 3Π-.
22 Brown and Ginter, 1973 give average effective constants for the four interacting components j(3Δu+, 3Πu+, 3Σu+) and h 3Σu+.
23H0 = 2.0E-8.
24These constants are corrected for l-uncoupling effects.
25missing note
26D1=5.28E-4, D2=5.50E-4, H0=2.5E-8
27Ab initio calculations of f 3Πu and F 1Πu Browne, 1965, Gupta and Matsen, 1969 yield excellent agreement with the observed constants and confirm the presence of substantial potential maxima; see also Mulliken, 1964.
28missing note
29D1=5.34E-4, D2=5.74E=4, H0=2.9E-8.
30missing note
31D1=5.34E-4, D2=5.45E-4, H0 = 0.91E-8.
32See also 33
33The rotational constants refer to Π- Brown and Ginter, 1971; B(3Π-)-B(3Π+) ~ +0.072. Slightly different constants were given by Dieke and Robinson, 1950 who also derived constants for 3He2.
34missing note
35Observed in absorption in a pulsed discharge Callear and Hedges, 1967.
36missing note
37missing note
38ωeze = -0.4875.
39αv= 0.1629(v+1/2)2 - 0.0655(v+1/2)3.
40D1= 5.76E-4, D2= 6.11E-4,...; H0=1.32E-8, H1= -0.40E-8, H2=-5.3E-8,... .
41missing note
42The constants refer to 3Π- and were derived by Ginter, 1965 from the d, f→b bands; B(3Π-) - B(3Π+) ~ +0.026 Ginter, 1965. The triplet splitting is partially resolved in the d→b bands Ginter, 1965.
43missing note
44D1= 5.34E-4,...; H0= 2.80E-8, H1= 3.60E-8,...
45 Brown and Ginter, 1971
46There is good experimental Ludlum, Larson, et al., 1967, Ginter and Battino, 1970 and theoretical Poshusta and Matsen, 1963, Klein, Greenawalt, et al., 1967, Gupta, 1972 evidence for a potential maximum in this state. Ludlum, Larson, et al., 1967 place the maximum at 0.067 eV above the asymptote; the net dissociation energy is 1.850 eV.
47From molecular beam magnetic resonance experiments Lichten, McCusker, et al., 1974, Vierima, 1975 have determined the triplet splitting for N=1 and 3. The splitting constants (extrapolated to N=0) are λ = -0.03666 Lichten, McCusker, et al., 1974, Vierima, 1975, γ= -0.0000808 cm-1 Lichten, McCusker, et al., 1974, Vierima, 1975. An ab initio calculation gives λ= -0.04089 Beck, Nicolaides, et al., 1974.
48missing note
49He ~ 2.7E-8 Brown and Ginter, 1971.
50Energy of a 3Σu+,v=0,N=0 above He(1S) + He(1S), based on D00(He2+)= l9073 cm-1. See also 81
51Average of Π- and Δ- as given by Rosen, 1970.
52Average of Σ+, Π+, Δ+ as given by Rosen, 1970.
53These constants refer to Π- and Δ- which are less affected by l-uncoupling.
54Refers to N=1.
55Strongly perturbed by l-uncoupling and interaction with H 1Σu+. 56
56 Brown and Ginter, 1973 give average effective constants for the four interacting components J(1Δu+, 1Πu+, 1Σu+) and H 1Σu+.
57These constants are corrected for l-uncoupling effects.
58missing note
59D1=5.26E-4, H0=2.18E-8.
60Ab initio calculations of f 3Πu and F 1Πu Browne, 1965, Gupta and Matsen, 1969 yield excellent agreement with the observed constants and confirm the presence of substantial potential maxima; see also Mulliken, 1964.
61D1=5.26E-4, H0 = 1.97E-8.
62D1=5.29E-4.
63missing note
64The rotational constants refer to Π- Brown and Ginter, 1971; B(Π-)-B(Π+) ~ + 0.044.
65missing note
66missing note
67missing note
68Franck-Condon factors Zhirnov and Shadrin, 1968.
69The weak maximum near 676 Å in the Hopfield continuum is ascribed by Chow and Smith, 1971 to the transition D→X.
70continuum
71ωeze= -0.1315. Calculations of Guberman and Goddard, 1972 give a potential hump of 0.22 eV at 2.09 Å; see also Andresen and Kuppermann, 1975 and Guberman and Goddard, 1975.
72missing note
73H0 = 1.72E-8,...
74 Ginter, 1965, 3.
75Be refers to Π-; B(Π-)-B(Π+) = +0.019; γe = -0.0015 Ginter, 1965, 3, βe = +0.05E-4 Ginter, 1965, 3.
76From Rosen, 1970.
77RKR potential curve Smith and Chow, 1970[see also Rosen, 1970]; ab initio potential Mukamel and Kaldor, 1971. The latter gives vibrational and rotational levels in good agreement with the experimental values. Tanaka and Yoshino, 1963 have established, from the absorption and emission bands near 600 Å, a potential maximum of 0.059 eV in the A 1Σu+ state. Theoretical work by Allison, Browne, et al., 1966, Scott, Greenawalt, et al., 1966, Guberman and Goddard, 1972 gives maxima of 0.084,0.153,0.061 eV, respectively; see also Andresen and Kuppermann, 1975, Guberman and Goddard, 1975.
78 Brown and Ginter, 1971
79 Brown and Ginter, 1971.
80Transitions from the low vibrational levels of A 1Σu+ to X 1Σg+ gives rise to the Hopfield continuum; see MOLSPEC. 1, 404. Transitions from the high vibrational levels as well as the continuous range of energy levels of A 1Σu+ to X 1Σg+ give rise to diffuse bands near 600 Å observed in emission Mies and Smith, 1966, Smith, 1967 and absorption Tanaka and Yoshino, 1963, Chow, Smith, et al., 1971 with quite different intensity distribution. See also Tanaka, Jursa, et al., 1958, Chow and Smith, 1971 and Michaelson and Smith, 1970, Mukamel and Kaldor, 1973, Peatman and Wu, 1973. Observed absorption coefficients near 600 Å Chow, Smith, et al., 1971 agree fairly well with those predicted by Sando and Dalgarno, 1971.
81Energy of the v=0,N=0 level of A 1Σu+ relative to He(1S) + He(1S), calculated from the corresponding value for a 3Σu+ by adding the energy difference Δv = 2343.91 ± 0.05 cm-1 Miller, Freund, et al., 1975 as determined by Miller, Freund, et al., 1975 from singlet-triplet anticrossings. Optical measurements give Δv = 2344.1 cm-1 Ginter and Battino, 1970. The relative position of the levels is much more accurately known than their absolute values.
82Repulsive potential with very small well (De = 0.90 meV).
83From differential elastic scattering measurements Farrar and Lee, 1972, Burgmans, Farrar, et al., 1976.
84Average of two independent values for the well depth obtained from measurements of the total Bennewitz, Busse, et al., 1972 and differential Farrar and Lee, 1972, Burgmans, Farrar, et al., 1976 elastic scattering cross sections (0.888 and 0.905 meV, respectively). Ab initio values range from 0.78 to 1.04 meV Schaefer, McLaughlin, et al., 1970, McLaughlin and Schaefer, 1971, Liu and McLean, 1973, Bertoncini and Wahl, 1970, Kleinman and Wolfsberg, 1974, Snook and Spurling, 1975. Both experiment and theory agree that no bound vibrational level exists in the potential well, i.e. D00 =0; see Murrell, 1969, Poulat, Larsen, et al., 1975. A somewhat higher De value (De= 0.99 meV Chapman, 1975) was derived Chapman, 1975 from the temperature dependence of the relaxation time in dilute 3He. For measurements of the short-range potential (0.49 < r(Å)< 1.56) see Foreman, Rol, et al., 1974; the long-range potential is discussed by Alexander, 1970, Bruch and McGee, 1970.
85Based on D00(He2+). From a detailed interpretation of the Hopfield continuum and the 600 Å absorption and emission bands Ginter and Brown, 1972 derives De(A 1Σu+) = 2.50 eV Ginter and Brown, 1972.
86Relative to He(1S)+He(1S), i.e. I.P.(He2) = I.P.(He) - D00(He2+). The I.P. for the lowest stable state (a 3Σu+) is 4.25297 eV.
87Giving the v=0,N=0 levels (real or hypothetical) of npσ 3Σg+ and npπ 3Πg- relative to 2sσ 3Σu+, v=0, N=0.

References

Go To: Top, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Ginter and Ginter, 1968
Ginter, M.L.; Ginter, D.S., Spectrum and structure of the He2 molecule. V. Characterization of the triplet states associated with the UAO's 6-17pπ and 7-12pσ, J. Chem. Phys., 1968, 48, 2284. [all data]

Rosen, 1970
Rosen, B., International tables of selected constants. 17. Spectroscopic data relative to diatomic molecules, Pub. Pergamon Press, Oxford, 1970, 0. [all data]

Dieke, 1929
Dieke, G.H., Uber die eigenschaften einer klasse von molekultermen, insbesondere der terme des heliummolekuls, Z. Phys., 1929, 57, 71. [all data]

Dieke, Imanishi, et al., 1929
Dieke, G.H.; Imanishi, S.; Takamine, T., Neue gesetzmabigkeiten im bandenspektrum des heliums. III, Z. Phys., 1929, 57, 305. [all data]

Jevons, 1932
Jevons, W., Report on band-spectra of diatomic molecules, Pub. The Physical Society, The University Press, London, 1932, 0. [all data]

Orth and Ginter, 1976
Orth, F.B.; Ginter, M.L., The spectrum and structure of the He2 molecule. Characterization of the triplet states associated with the UAO's 4pσ, 5pσ, and 6pσ, J. Mol. Spectrosc., 1976, 61, 282. [all data]

Brown and Ginter, 1973
Brown, C.M.; Ginter, M.L., Spectrum and structure of the He2 molecule. Characterization of the singlet and triplet states associated with the UAO'S 4s, 4dσ, 4dπ, and 4dδ, J. Mol. Spectrosc., 1973, 46, 256. [all data]

Ginter, 1966
Ginter, M.L., Spectrum and structure of the He2 molecule. IV. Characterization of the singlet and triplet states associated with the UAO's 3dσ, 3dπ, and 3dδ, J. Chem. Phys., 1966, 45, 248. [all data]

Ginter, 1965
Ginter, M.L., The spectrum and structure of the He2 molecule. Part III. Characterization of the triplet states associated with the UAO's 3s and 2pπ, J. Mol. Spectrosc., 1965, 18, 321. [all data]

Brown and Ginter, 1971
Brown, C.M.; Ginter, M.L., Spectrum and structure of the He2 molecule. VI. Characterization of the states associated with the UAO's 3pπ and 2s, J. Mol. Spectrosc., 1971, 40, 302. [all data]

Ginter, 1965, 2
Ginter, M.L., Spectrum and structure of the He2 molecule. I. Characterization of the states associated with the UAO's 3pσ and 2s, J. Chem. Phys., 1965, 42, 561. [all data]

Hepner and Herman, 1956
Hepner, G.; Herman, L., Spectroscopie. Nouveau systeme de bandes d'emission de la molecule He2 vers 4700 cm-1, C.R. Acad. Sci. Paris, Ser. B, 1956, 243, 1504. [all data]

Gloersen and Dieke, 1965
Gloersen, P.; Dieke, G.H., Molecular spectra of hydrogen and helium in the infrared, J. Mol. Spectrosc., 1965, 16, 191. [all data]

Ginter, 1965, 3
Ginter, M.L., The spectrum and structure of the He2 molecule. Part II. Characterization of the singlet states associated with the UAO's 3s and 2pπ, J. Mol. Spectrosc., 1965, 17, 224. [all data]

Tanaka and Yoshino, 1963
Tanaka, Y.; Yoshino, K., 600-Å band of helium, J. Chem. Phys., 1963, 39, 3081. [all data]

Mies and Smith, 1966
Mies, F.H.; Smith, A.L., Bandlike structure from continuum-continuum emission: the He2 600-Å bands, J. Chem. Phys., 1966, 45, 994. [all data]

Smith, 1967
Smith, A.L., Observing the effect of a change in mass on de Broglie wavelength: the 600-Å bands of 3He2, J. Chem. Phys., 1967, 47, 1561. [all data]

Chow, Smith, et al., 1971
Chow, K.W.; Smith, A.L.; Waggoner, M.G., Absorption coefficients of helium between 599 and 610 Å; transition moment for He2 A1 Σu+ ← X1 Σg+, J. Chem. Phys., 1971, 55, 4208. [all data]

Browne, 1965
Browne, J.C., Quantum mechanical potential energy curves for the 1Πu and 3Πu states of He2 and the 1Πg and 3Πg states of H2, Phys. Rev. A: Gen. Phys., 1965, 138, 9. [all data]

Gupta and Matsen, 1969
Gupta, B.K.; Matsen, F.A., Quantum-mechanical study of the F1Πu and f3Πu states of He2, J. Chem. Phys., 1969, 50, 3797. [all data]

Mulliken, 1964
Mulliken, R.S., Rare-gas and hydrogen molecule electronic states, noncrossing rule, and recombination of electrons with rare-gas and hydrogen ions, Phys. Rev., 1964, 136, 962. [all data]

Dieke and Robinson, 1950
Dieke, G.H.; Robinson, E.S., The molecular spectrum of He3, Phys. Rev., 1950, 80, 1. [all data]

Callear and Hedges, 1967
Callear, A.B.; Hedges, R.E.M., Metastability of rotationally hot dihelium at 77° K, Nature (London), 1967, 215, 1267. [all data]

Ludlum, Larson, et al., 1967
Ludlum, K.H.; Larson, L.P.; Caffrey, J.M., Jr., Activation energy for the three-body reaction of helium triplet atom with normal helium, J. Chem. Phys., 1967, 46, 127. [all data]

Ginter and Battino, 1970
Ginter, M.L.; Battino, R., Potential-energy curves for the He2 molecule, J. Chem. Phys., 1970, 52, 4469. [all data]

Poshusta and Matsen, 1963
Poshusta, R.D.; Matsen, F.A., Potential curve of the metastable helium molecule, Phys. Rev., 1963, 132, 307. [all data]

Klein, Greenawalt, et al., 1967
Klein, D.J.; Greenawalt, E.M.; Matsen, F.A., Adjustment of ab initio potential curves, J. Chem. Phys., 1967, 47, 4820. [all data]

Gupta, 1972
Gupta, B.K., On the potential curve of the metastable helium molecule, Mol. Phys., 1972, 23, 75. [all data]

Lichten, McCusker, et al., 1974
Lichten, W.; McCusker, M.V.; Vierima, T.L., Fine structure of the metastable a3Σu+ state of the helium molecule, J. Chem. Phys., 1974, 61, 2200. [all data]

Vierima, 1975
Vierima, T.L., Determination of the sign of the spin-spin interaction in He2(a3Σu+), J. Chem. Phys., 1975, 62, 2925. [all data]

Beck, Nicolaides, et al., 1974
Beck, D.R.; Nicolaides, C.A.; Musher, J.I., Calculation of the fine structure of the a3Σu+ state of molecular helium, Phys. Rev. A: Gen. Phys., 1974, 10, 1522. [all data]

Zhirnov and Shadrin, 1968
Zhirnov, N.I.; Shadrin, O.P., Calculation of Franck-Condon factors with Poschl-Teller wavefunctions. I. The probabilities of some vibrational transitions in the D1Σu+-B1Πg band system of the He2 molecule, Opt. Spectrosc. Engl. Transl., 1968, 24, 478, In original 890. [all data]

Chow and Smith, 1971
Chow, K.-W.; Smith, A.L., Repulsive potential curves from molecular continuum-continuum emission. III. He2(X1Σg+), J. Chem. Phys., 1971, 54, 1556. [all data]

Guberman and Goddard, 1972
Guberman, S.L.; Goddard, W.A., III, On the origin of energy barriers in the excited states of He2, Chem. Phys. Lett., 1972, 14, 460. [all data]

Andresen and Kuppermann, 1975
Andresen, B.; Kuppermann, A., The scattering of excited by ground state atoms application to He2, Mol. Phys., 1975, 30, 997. [all data]

Guberman and Goddard, 1975
Guberman, S.L.; Goddard, W.A., III, Nature of the excited states of He2, Phys. Rev. A: Gen. Phys., 1975, 12, 1203. [all data]

Smith and Chow, 1970
Smith, A.L.; Chow, K.W., RKR potential and more accurate dissociation energy of He2(A1Σu+), J. Chem. Phys., 1970, 52, 1010. [all data]

Mukamel and Kaldor, 1971
Mukamel, S.; Kaldor, U., Potential of the A1Σu+ state of He2, Mol. Phys., 1971, 22, 1107. [all data]

Allison, Browne, et al., 1966
Allison, D.C.; Browne, J.C.; Dalgarno, A., Collision-induced de-activation of metastable helium, Proc. Phys. Soc. London, 1966, 89, 41. [all data]

Scott, Greenawalt, et al., 1966
Scott, D.R.; Greenawalt, E.M.; Browne, J.C.; Matsen, F.A., Quantum-mechanical potential-energy curve for the lowest 1Σu+ state of He2, J. Chem. Phys., 1966, 44, 2981. [all data]

Tanaka, Jursa, et al., 1958
Tanaka, Y.; Jursa, A.S.; LeBlanc, F.J., Continuous emission spectra of rare gases in the vacuum ultraviolet region. II. Neon and helium, J. Opt. Soc. Am., 1958, 48, 304. [all data]

Michaelson and Smith, 1970
Michaelson, R.C.; Smith, A.L., Time resolved studies of rare-gas molecular emission in the vacuum ultraviolet: helium and argon, Chem. Phys. Lett., 1970, 6, 1. [all data]

Mukamel and Kaldor, 1973
Mukamel, S.; Kaldor, U., Ab initio calculation of the He2 A1Σu+ ← X1Σg+ absorption spectrum, Mol. Phys., 1973, 26, 291. [all data]

Peatman and Wu, 1973
Peatman, W.B.; Wu, D.T., The 600 Å bands of helium, Chem. Phys., 1973, 2, 335. [all data]

Sando and Dalgarno, 1971
Sando, K.M.; Dalgarno, A., The absorption of radiation near 600 Å by helium, Mol. Phys., 1971, 20, 103. [all data]

Miller, Freund, et al., 1975
Miller, T.A.; Freund, R.S.; Zegarski, B.R.; Jost, R.; Lombardi, M.; Derouard, J., Observation of singlet-triplet anticrossings in 4He2, J. Chem. Phys., 1975, 63, 4042. [all data]

Farrar and Lee, 1972
Farrar, J.M.; Lee, Y.T., Intermolecular potentials from crossed beam differential elastic scattering measurements. V. The attractive well of He2, J. Chem. Phys., 1972, 56, 5801. [all data]

Burgmans, Farrar, et al., 1976
Burgmans, A.L.J.; Farrar, J.M.; Lee, Y.T., Attractive well of He-He from 3He-4He differential elastic scattering measurements, J. Chem. Phys., 1976, 64, 1345. [all data]

Bennewitz, Busse, et al., 1972
Bennewitz, H.G.; Busse, H.; Dohmann, H.D.; Oates, D.E.; Schrader, W., Evidence for different interaction potentials for He4 - He4 and He3 - He3 from scattering cross-section measurements, Phys. Rev. Lett., 1972, 29, 533. [all data]

Schaefer, McLaughlin, et al., 1970
Schaefer, H.F., III; McLaughlin, D.R.; Harris, F.E.; Alder, B.J., Calculation of the attractive He pair potential, Phys. Rev. Lett., 1970, 25, 988. [all data]

McLaughlin and Schaefer, 1971
McLaughlin, D.R.; Schaefer, H.F., III, Interatomic correlation energy and the van der Waals attraction between two helium atoms, Chem. Phys. Lett., 1971, 12, 244. [all data]

Liu and McLean, 1973
Liu, B.; McLean, A.D., Accurate calculation of the attractive interaction of two ground state helium atoms, J. Chem. Phys., 1973, 59, 4557. [all data]

Bertoncini and Wahl, 1970
Bertoncini, P.; Wahl, A.C., Ab initio calculation of the helium-helium 1Σg+ potential at intermediate and large separations, Phys. Rev. Lett., 1970, 25, 991. [all data]

Kleinman and Wolfsberg, 1974
Kleinman, L.I.; Wolfsberg, M., Adiabatic correction to the van der Waals well depth of He2, J. Chem. Phys., 1974, 61, 4366. [all data]

Snook and Spurling, 1975
Snook, I.K.; Spurling, T.H., Symmetry adapted perturbation theory of intermolecular potentials. The helium-helium interaction, J. Chem. Soc. Faraday Trans. 2, 1975, 71, 852. [all data]

Murrell, 1969
Murrell, J.N., Bound vibrational states for weakly attractive potentials, Mol. Phys., 1969, 16, 601. [all data]

Poulat, Larsen, et al., 1975
Poulat, C.; Larsen, S.Y.; Novaro, O., Is there a helium molecule?, Mol. Phys., 1975, 30, 645. [all data]

Chapman, 1975
Chapman, R., Temperature dependence of the relaxation time in dilute 3He gas: an investigation of the He-He potential, Phys. Rev. A: Gen. Phys., 1975, 12, 2333. [all data]

Foreman, Rol, et al., 1974
Foreman, P.B.; Rol, P.K.; Coffin, K.P., The repulsive 1Σg+ He2 potential obtained from total cross sections, J. Chem. Phys., 1974, 61, 1658. [all data]

Alexander, 1970
Alexander, M.H., Exact treatment of the long-range dipole-dipole interaction between two helium atoms, J. Chem. Phys., 1970, 52, 3354. [all data]

Bruch and McGee, 1970
Bruch, L.W.; McGee, I.J., Semiempirical helium intermolecular potential. II. Dilute gas properties, J. Chem. Phys., 1970, 52, 5884. [all data]

Ginter and Brown, 1972
Ginter, M.L.; Brown, C.M., Dissociation energies of X2Σu+ (HE2+) and A1Σu+ (He2), J. Chem. Phys., 1972, 56, 672. [all data]


Notes

Go To: Top, Constants of diatomic molecules, References