Pyridine

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.

Quantity Value Units Method Reference Comment
Δfgas140.2kJ/molCcbHubbard, Frow, et al., 1961ALS
Δfgas140.6 ± 1.5kJ/molCmAndon, Cox, et al., 1957ALS
Δfgas140.7 ± 1.5kJ/molCcbCox, Challoner, et al., 1954ALS
Δfgas110.1kJ/molN/AConstam and White, 1903Value computed using ΔfHliquid° value of 69.9 kj/mol from Constam and White, 1903 and ΔvapH° value of 40.2 kj/mol from Hubbard, Frow, et al., 1961.; DRB

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid99.96 ± 0.50kJ/molCcbHubbard, Frow, et al., 1961ALS
Δfliquid100.2 ± 1.5kJ/molCcbCox, Challoner, et al., 1954ALS
Δfliquid69.9kJ/molCcbConstam and White, 1903ALS
Quantity Value Units Method Reference Comment
Δcliquid-2725.kJ/molCcbStrepikheev, Baranov, et al., 1962ALS
Δcliquid-2782.2 ± 0.42kJ/molCcbHubbard, Frow, et al., 1961ALS
Δcliquid-2782.4 ± 1.5kJ/molCcbCox, Challoner, et al., 1954ALS
Δcliquid-2758.kJ/molCcbConstam and White, 1903ALS
Quantity Value Units Method Reference Comment
liquid177.90J/mol*KN/AMcCullough, Douslin, et al., 1957DH
liquid179.1J/mol*KN/AParks, Todd, et al., 1936Extrapolation below 90 K, 50.04 J/mol*K.; DH
liquid210.41J/mol*KN/APearce and Bakke, 1936Extrapolation below 90 K, 89.33 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
193.4293.Rastorguev and Ganiev, 1967T = 293 to 353 K.; DH
133.298.15Hubbard, Frow, et al., 1961DH
146.9332.Swietoslawski and Zielenkiewicz, 1958Mean value 22 to 96°C.; DH
132.72298.15McCullough, Douslin, et al., 1957T = 10 to 350 K.; DH
134.93298.1Parks, Todd, et al., 1936T = 90 to 300 K.; DH
133.30298.1Pearce and Bakke, 1936T = 90 to 298 K. Value is unsmoothed experimental datum.; DH
129.3289.Radulescu and Jula, 1934DH
135.35273.4Swietoslawski, Tybicka, et al., 1931DH
135.6290.Swietoslawski, Tybicka, et al., 1931, 2DH
129.33294.Mathews, Krause, et al., 1917DH
130.5283.Bramley, 1916Mean value, 0 to 20°C.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil388.5 ± 0.6KAVGN/AAverage of 80 out of 84 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus232. ± 2.KAVGN/AAverage of 26 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple231.48KN/AHelm, Lanum, et al., 1958Uncertainty assigned by TRC = 0.03 K; measured in calorimeter at USBM, Bartlesville, OK; TRC
Ttriple231.480KN/AMcCullough, Douslin, et al., 1957, 2Uncertainty assigned by TRC = 0.05 K; by extrapolation of 1/f to zero; TRC
Quantity Value Units Method Reference Comment
Tc619. ± 2.KAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Pc56.60barN/ABrunner, 1987Uncertainty assigned by TRC = 0.0565 bar; Visual, optical cell 30cm high. P transducer cal. vs PB.; TRC
Pc56.40barN/AKobe, Ravicz, et al., 1956Uncertainty assigned by TRC = 1.034 bar; TRC
Pc60.795barN/AHerz and Neukirch, 1923Uncertainty assigned by TRC = 0.8106 bar; TRC
Quantity Value Units Method Reference Comment
Vc0.253l/molN/AKobe, Ravicz, et al., 1956Uncertainty assigned by TRC = 0.005 l/mol; TRC
Quantity Value Units Method Reference Comment
Δvap40.3 ± 0.3kJ/molAVGN/AAverage of 10 out of 11 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
35.09388.4N/AMajer and Svoboda, 1985 
39.3324.N/AUkraintseva, Soldatov, et al., 1997Based on data from 289. to 358. K.; AC
37.6354.N/ABlanco, Beltran, et al., 1994Based on data from 346. to 362. K.; AC
39.9310.EBLencka, 1990Based on data from 295. to 388. K.; AC
39.7311.AStephenson and Malanowski, 1987Based on data from 296. to 353. K.; AC
37.3363.AStephenson and Malanowski, 1987Based on data from 348. to 434. K.; AC
35.0446.AStephenson and Malanowski, 1987Based on data from 431. to 558. K.; AC
34.0567.AStephenson and Malanowski, 1987Based on data from 552. to 620. K.; AC
37.6355.EBStephenson and Malanowski, 1987Based on data from 340. to 426. K. See also McCullough, Douslin, et al., 1957.; AC
39.6313.CMichou-Saucet, Jose, et al., 1986Based on data from 298. to 333. K.; AC
39.4313.CMajer, Svoboda, et al., 1984AC
38.5328.CMajer, Svoboda, et al., 1984AC
37.7343.CMajer, Svoboda, et al., 1984AC
36.3368.N/AMajer, Svoboda, et al., 1984AC
37.5 ± 0.1346.CMcCullough, Douslin, et al., 1957AC
36.4 ± 0.1366.CMcCullough, Douslin, et al., 1957AC
35.1 ± 0.1388.CMcCullough, Douslin, et al., 1957AC
38.4335.MGHerington and Martin, 1953Based on data from 320. to 388. K.; AC
44.4273.N/AMeulen and Mann, 1931Based on data from 258. to 389. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kJ/mol) β Tc (K) Reference Comment
298. to 388.55.430.2536620.Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
340.5 to 426.044.162721371.358-58.496McCullough, Douslin, et al., 1957Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
8.2785231.49McCullough, Douslin, et al., 1957Includes energy of anomaly at about 210 K.; DH
8.28231.5Domalski and Hearing, 1996AC
8.272231.1Parks, Todd, et al., 1936DH
3.100230.38Pearce and Bakke, 1936DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
35.76231.49McCullough, Douslin, et al., 1957Includes; DH
35.79231.1Parks, Todd, et al., 1936DH
13.46230.38Pearce and Bakke, 1936DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C5H4N- + Hydrogen cation = Pyridine

By formula: C5H4N- + H+ = C5H5N

Quantity Value Units Method Reference Comment
Δr1631. ± 8.4kJ/molIMRESchafman and Wenthold, 2007gas phase; B
Δr1636. ± 10.kJ/molTDEqMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B
Quantity Value Units Method Reference Comment
Δr1601. ± 8.4kJ/molTDEqMeot-ner and Kafafi, 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B
Δr1607. ± 13.kJ/molIMRBDePuy, Kass, et al., 1988gas phase; Comparable to water in acidity; B
Δr<1574. ± 8.4kJ/molIMRBBruins, Ferrer-Correia, et al., 1978gas phase; O- deprotonates; B

C5H6N+ + Pyridine = (C5H6N+ • Pyridine)

By formula: C5H6N+ + C5H5N = (C5H6N+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr105.kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr103.kJ/molPHPMSMeot-Ner M. and Sieck, 1983gas phase; M
Δr110.kJ/molHPMSHolland and Castleman, 1982gas phase; M
Δr99.2kJ/molPHPMSMeot-Ner (Mautner), 1979gas phase; M
Δr99.2kJ/molPHPMSMeot-Ner (Mautner), 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr124.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr118.J/mol*KPHPMSMeot-Ner M. and Sieck, 1983gas phase; M
Δr134.J/mol*KHPMSHolland and Castleman, 1982gas phase; M
Δr120.J/mol*KPHPMSMeot-Ner (Mautner), 1979gas phase; M
Δr120.J/mol*KPHPMSMeot-Ner (Mautner), 1979gas phase; M

Pyridine + 3Hydrogen = Piperidine

By formula: C5H5N + 3H2 = C5H11N

Quantity Value Units Method Reference Comment
Δr-193.8 ± 0.75kJ/molEqkHales and Herington, 1957gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -202.2 ± 0.75 kJ/mol; At 400-550 K; ALS
Δr-193.0 ± 2.1kJ/molEqkBurrows and King, 1935liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -188.3 kJ/mol; At 423-443 K; ALS

Chlorine anion + Pyridine = (Chlorine anion • Pyridine)

By formula: Cl- + C5H5N = (Cl- • C5H5N)

Quantity Value Units Method Reference Comment
Δr53.1 ± 8.4kJ/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr82.4J/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr28. ± 11.kJ/molTDAsHiraoka, Mizuse, et al., 1988gas phase; B

(C5H6N+ • 2Pyridine) + Pyridine = (C5H6N+ • 3Pyridine)

By formula: (C5H6N+ • 2C5H5N) + C5H5N = (C5H6N+ • 3C5H5N)

Quantity Value Units Method Reference Comment
Δr56.9kJ/molHPMSHolland and Castleman, 1982gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr159.J/mol*KHPMSHolland and Castleman, 1982gas phase; Entropy change is questionable; M

Lithium ion (1+) + Pyridine = (Lithium ion (1+) • Pyridine)

By formula: Li+ + C5H5N = (Li+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr181. ± 15.kJ/molCIDTAmunugama and Rodgers, 2000RCD
Δr180.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Potassium ion (1+) + Pyridine = (Potassium ion (1+) • Pyridine)

By formula: K+ + C5H5N = (K+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr90. ± 4.kJ/molCIDTAmunugama and Rodgers, 2000RCD
Δr86.6kJ/molHPMSDavidson and Kebarle, 1976gas phase; M
Quantity Value Units Method Reference Comment
Δr77.8J/mol*KHPMSDavidson and Kebarle, 1976gas phase; M

(Silver ion (1+) • 2Pyridine) + Pyridine = (Silver ion (1+) • 3Pyridine)

By formula: (Ag+ • 2C5H5N) + C5H5N = (Ag+ • 3C5H5N)

Quantity Value Units Method Reference Comment
Δr69.9kJ/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr117.J/mol*KHPMSHolland and Castleman, 1982gas phase; M

(Silver ion (1+) • 3Pyridine) + Pyridine = (Silver ion (1+) • 4Pyridine)

By formula: (Ag+ • 3C5H5N) + C5H5N = (Ag+ • 4C5H5N)

Quantity Value Units Method Reference Comment
Δr74.9kJ/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr169.J/mol*KHPMSHolland and Castleman, 1982gas phase; M

(Chlorine anion • Pyridine) + Pyridine = (Chlorine anion • 2Pyridine)

By formula: (Cl- • C5H5N) + C5H5N = (Cl- • 2C5H5N)

Quantity Value Units Method Reference Comment
Δr49.0kJ/molPHPMSHiraoka, Mizuse, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr94.6J/mol*KPHPMSHiraoka, Mizuse, et al., 1988gas phase; M

(C5H6N+ • Pyridine) + Pyridine = (C5H6N+ • 2Pyridine)

By formula: (C5H6N+ • C5H5N) + C5H5N = (C5H6N+ • 2C5H5N)

Quantity Value Units Method Reference Comment
Δr52.7kJ/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr124.J/mol*KHPMSHolland and Castleman, 1982gas phase; M

H2O3- + Pyridine + Water = C5H7NO3-

By formula: H2O3- + C5H5N + H2O = C5H7NO3-

Quantity Value Units Method Reference Comment
Δr137. ± 9.6kJ/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

Oxygen anion + Pyridine = C5H5NO2-

By formula: O2- + C5H5N = C5H5NO2-

Quantity Value Units Method Reference Comment
Δr90.8 ± 9.6kJ/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

Nitric oxide anion + Pyridine = C5H5N2O-

By formula: NO- + C5H5N = C5H5N2O-

Quantity Value Units Method Reference Comment
Δr56.9 ± 9.6kJ/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

3Pyridine, 1-oxide + potassium chloride = 3Pyridine + KClO3

By formula: 3C5H5NO + ClK = 3C5H5N + KClO3

Quantity Value Units Method Reference Comment
Δr315. ± 10.kJ/molCmShaofeng and Pilcher, 1988solid phase; ALS

3Pyridine, 1-oxide + potassium bromide = 3Pyridine + KBrO3

By formula: 3C5H5NO + BrK = 3C5H5N + KBrO3

Quantity Value Units Method Reference Comment
Δr313.6 ± 9.6kJ/molCmShaofeng and Pilcher, 1988solid phase; ALS

Iron ion (1+) + Pyridine = (Iron ion (1+) • Pyridine)

By formula: Fe+ + C5H5N = (Fe+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr223. ± 9.2kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Chromium ion (1+) + Pyridine = (Chromium ion (1+) • Pyridine)

By formula: Cr+ + C5H5N = (Cr+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr197. ± 12.kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Titanium ion (1+) + Pyridine = (Titanium ion (1+) • Pyridine)

By formula: Ti+ + C5H5N = (Ti+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr217. ± 9.6kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Manganese ion (1+) + Pyridine = (Manganese ion (1+) • Pyridine)

By formula: Mn+ + C5H5N = (Mn+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr182. ± 8.8kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Scandium ion (1+) + Pyridine = (Scandium ion (1+) • Pyridine)

By formula: Sc+ + C5H5N = (Sc+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr231. ± 10.kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Magnesium ion (1+) + Pyridine = (Magnesium ion (1+) • Pyridine)

By formula: Mg+ + C5H5N = (Mg+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr200. ± 6.7kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Vanadium ion (1+) + Pyridine = (Vanadium ion (1+) • Pyridine)

By formula: V+ + C5H5N = (V+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr218. ± 13.kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Nickel ion (1+) + Pyridine = (Nickel ion (1+) • Pyridine)

By formula: Ni+ + C5H5N = (Ni+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr255. ± 15.kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Aluminum ion (1+) + Pyridine = (Aluminum ion (1+) • Pyridine)

By formula: Al+ + C5H5N = (Al+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr190. ± 10.kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Zinc ion (1+) + Pyridine = (Zinc ion (1+) • Pyridine)

By formula: Zn+ + C5H5N = (Zn+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr247. ± 7.1kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Cobalt ion (1+) + Pyridine = (Cobalt ion (1+) • Pyridine)

By formula: Co+ + C5H5N = (Co+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr247. ± 13.kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Copper ion (1+) + Pyridine = (Copper ion (1+) • Pyridine)

By formula: Cu+ + C5H5N = (Cu+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr246. ± 10.kJ/molCIDTRodgers, Stanley, et al., 2000RCD

Sodium ion (1+) + Pyridine = (Sodium ion (1+) • Pyridine)

By formula: Na+ + C5H5N = (Na+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr127. ± 3.kJ/molCIDTAmunugama and Rodgers, 2000RCD

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
89. QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
110.5900.MN/A 

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedPMS-100090.726.Arutyunov, Kudryashov, et al., 2004N2, Chromaton N-AW-DMCS; Column length: 2. m
PackedApiezon L160.749.Kurbatova, Finkelstein, et al., 2004Chromaton N-AW; Column length: 1. m; Large deviations from similar measurements
PackedC78, Branched paraffin130.724.4Dallos, Sisak, et al., 2000He; Column length: 3.3 m
CapillaryHP-10160.727.87Garay, 200050. m/0.2 mm/0.2 μm, H2
CapillaryOV-101110.748.Golovnya, Kuz'menko, et al., 2000He; Phase thickness: 0.4 μm
CapillaryOV-101110.738.Zhuravleva, 200050. m/0.3 mm/0.4 μm, He
CapillarySqualane200.740.Castello, Vezzani, et al., 1999 
CapillaryOV-101110.739.Golovnya, Kuz'menko, et al., 199950. m/0.3 mm/0.4 μm, He
CapillaryOV-101110.756.Terenina, Zhuravieva, et al., 199750. m/0.3 mm/0.4 μm, He
CapillarySPB-160.706.Castello, Vezzani, et al., 199430. m/0.32 mm/0.25 μm, He
PackedPorapack Q200.728.Gawdzik and Matynia, 1994H2; Column length: 1. m
PackedSE-30120.738.Kowalski, 1992He, Gas Chrom Q (100-120 mesh); Column length: 0.25 m
PackedC78, Branched paraffin130.723.4Reddy, Dutoit, et al., 1992Chromosorb G HP; Column length: 3.3 m
CapillaryHP-160.729.Zhang, Li, et al., 1992N2; Column length: 25. m; Column diameter: 0.20 mm
CapillaryHP-1100.738.Zhang, Li, et al., 1992N2; Column length: 25. m; Column diameter: 0.20 mm
PackedApolane130.726.Dutoit, 1991Column length: 3.7 m
CapillarySE-30110.738.Samusenko and Golovnya, 198825. m/0.32 mm/1. μm, He
CapillarySE-3080.732.Samusenko and Golovnya, 198825. m/0.32 mm/1. μm, He
PackedOV-1120.737.Betts, 1986N2; Column length: 1.5 m
PackedSE-30120.743.Betts, 1986N2; Column length: 1. m
PackedSP-2100120.746.Betts, 1986N2; Column length: 1. m
CapillaryOV-101150.745.Morishita, Morimoto, et al., 1986N2; Column length: 20. m; Column diameter: 0.23 mm
CapillaryOV-10180.732.Samusenko, Svetlova, et al., 198625. m/0.25 mm/0.156 μm, He
CapillaryOV-10180.732.Samusenko, Svetlova, et al., 198635. m/0.25 mm/0.125 μm, He
CapillaryOV-10180.735.Samusenko, Svetlova, et al., 198635. m/0.25 mm/0.125 μm, He
CapillaryOV-10180.735.Samusenko, Svetlova, et al., 198635. m/0.25 mm/0.125 μm, He
CapillaryOV-10180.733.Samusenko, Svetlova, et al., 198650. m/0.25 mm/0.125 μm, He
PackedOV-101130.692.Osmialowski, Halkiewicz, et al., 1985Ar, Chromosorb W HP; Column length: 1. m
PackedSE-30120.741.Stolyarov and Kartsova, 1984N2; Column length: 200. m
PackedOV-1120.741.Valko, Papp, et al., 1984Gas Chrom Q; Column length: 2. m
PackedApolane100.719.Castello and D'Amato, 1983He, Chromosorb G; Column length: 3. m
PackedSqualane100.707.Castello and D'Amato, 1983He, Chromosorb G; Column length: 3. m
PackedSqualane120.699.Castello and D'Amato, 1983He, Chromosorb G; Column length: 3. m
PackedSqualane125.711.Castello and D'Amato, 1983He, Chromosorb G; Column length: 3. m
PackedSqualane200.740.Castello and D'Amato, 1983He, Chromosorb G; Column length: 3. m
PackedSE-30100.743.Winskowski, 1983Gaschrom Q; Column length: 2. m
PackedPorapack Q200.690.Goebel, 1982N2
PackedTriacontane80.735.Castello and D'Amato, 1979He, Chromosorb W AW (60-80 mesh); Column length: 3. m
PackedSqualane80.751.Castello and D'Amato, 1979He, Chromosorb W AW (60-80 mesh); Column length: 3. m
PackedSqualane100.721.6Gröbler and Bálizs, 1979Column length: 1. m
CapillaryApiezon M120.739.Golovnya and Misharina, 1977 
PackedApiezon L130.751.Shatts, Avots, et al., 1977He, Chromosorb W AW-DMCS; Column length: 2.4 m
PackedApolane70.705.9Riedo, Fritz, et al., 1976He, Chromosorb; Column length: 2.4 m
PackedApiezon L100.734.Zhuravleva, Kapustin, et al., 1976N2 or He, Chromosorb G, AW; Column length: 2.7 m
PackedSE-30150.750.Ashes and Haken, 1974Celaton (62-72 mesh); Column length: 3.7 m
PackedApiezon L110.728.Bark and Wheatstone, 1974N2, Chromosorb W AW-DCMS; Column length: 2. m
PackedApiezon L130.736.Bark and Wheatstone, 1974N2, Chromosorb W AW-DCMS; Column length: 2. m
PackedApiezon L150.748.Bark and Wheatstone, 1974N2, Chromosorb W AW-DCMS; Column length: 2. m
PackedPMS-100130.720.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPMS-100150.725.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPMS-100180.730.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedDC-200120.730.Reymond, Mueggler-Chavan, et al., 1966Celite; Column length: 4. m
PackedSE-30120.725.Viani, Müggler-Chavan, et al., 1965He, Chromosorb P; Column length: 6. m

Kovats' RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-1717.Takeoka, Perrino, et al., 199660. m/0.25 mm/0.25 μm, 30. C @ 4. min, 2. K/min; Tend: 220. C
CapillaryDB-1719.Takeoka, Perrino, et al., 199660. m/0.25 mm/0.25 μm, 30. C @ 4. min, 2. K/min; Tend: 220. C
CapillaryOV-101733.Shibamoto, Kamiya, et al., 1981N2, 1. K/min; Column length: 80. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C
CapillaryOV-101736.Shibamoto, Kamiya, et al., 1981N2, 1. K/min; Column length: 80. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C
CapillaryOV-101695.Yamaguchi and Shibamoto, 1979N2, 2. K/min; Column length: 70. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C
CapillaryOV-101696.Yamaguchi and Shibamoto, 1979N2, 2. K/min; Column length: 70. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryBP-1722.SGE, 2005Program: not specified
CapillaryBP-5746.SGE, 2005Program: not specified
CapillaryBPX-5750.SGE, 2005Program: not specified
CapillarySPB-1731.5Castello, Timossi, et al., 1988N2; Column length: 60. m; Column diameter: 0.75 mm; Program: not specified
PackedSE-30740.Moffat, Stead, et al., 1974Chromosrb G; Column length: 2. m; Program: not specified

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryPEG-40M150.1195.Terenina, Zhuravieva, et al., 199750. m/0.3 mm/0.4 μm, He
CapillarySupelcowax-1060.1187.Castello, Vezzani, et al., 199430. m/0.32 mm/0.25 μm, He
CapillaryPEG-40M110.1195.Golovnya, Samusenko, et al., 1987He; Column length: 50. m; Column diameter: 0.3 mm
CapillaryPEG-40M80.1180.Golovnya, Samusenko, et al., 1987He; Column length: 50. m; Column diameter: 0.3 mm
PackedCarbowax 20M80.1177.Kersten and Poole, 1987N2, Chromosorb W-AW; Column length: 3.5 m
PackedPEG-20M120.1180.Betts, 1986Column length: 1. m
PackedPEG-20M120.1216.Stolyarov and Kartsova, 1984N2, Chromaton N AW HMDS; Column length: 2. m
PackedCarbowax 20M75.1224.Goebel, 1982N2, Kieselgur (60-100 mesh); Column length: 2. m
PackedCarbowax 20M100.1190.Bark and Wheatstone, 1974N2, Chromosorb W AW-DCMS; Column length: 2. m
PackedCarbowax 20M110.1193.Bark and Wheatstone, 1974N2, Chromosorb W AW-DCMS; Column length: 2. m
PackedCarbowax 20M90.1185.Bark and Wheatstone, 1974N2, Chromosorb W AW-DCMS; Column length: 2. m
PackedPEG-2000150.1233.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000152.1227.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000180.1233.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m

Kovats' RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1193.Shimoda and Shibamoto, 1990He, 40. C @ 6. min, 3. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 190. C
CapillaryDB-Wax1185.Tatsuka, Suekane, et al., 199060. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min; Tend: 200. C
CapillaryDB-Wax1187.Tatsuka, Suekane, et al., 199060. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min; Tend: 200. C
CapillaryBP-201180.MacLeod and Pieris, 1983H2, 65. C @ 3. min, 12. K/min; Column length: 25. m; Column diameter: 0.20 mm; Tend: 180. C
CapillaryCarbowax 20M1180.Shibamoto, Kamiya, et al., 1981N2, 2. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C
CapillaryCarbowax 20M1181.Shibamoto, Kamiya, et al., 1981N2, 2. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C

Kovats' RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryBP-201185.SGE, 2005Program: not specified
CapillaryPEG-20M1181.Slizhov and Gavrilenko, 2001He; Column length: 10. m; Column diameter: 0.2 mm; Program: not specified
CapillarySupelcowax-101190.1Castello, Timossi, et al., 1988N2; Column length: 60. m; Column diameter: 0.75 mm; Program: not specified

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-5747.Methven L., Tsoukka M., et al., 200760. m/0.32 mm/1. μm, 40. C @ 2. min, 4. K/min, 260. C @ 10. min
Capillary5 % Phenyl methyl siloxane769.Estevez, Ventanas, et al., 200530. m/0.25 mm/1. μm, He, 40. C @ 10. min, 7. K/min, 250. C @ 5. min
CapillaryHP-5MS753.Pino, Mesa, et al., 200530. m/0.25 mm/0.25 μm, He, 60. C @ 2. min, 4. K/min, 250. C @ 20. min
CapillaryCP-Sil 8CB-MS751.Hierro, de la Hoz, et al., 200460. m/0.25 mm/0.25 μm, 40. C @ 2. min, 4. K/min, 280. C @ 5. min
CapillarySPB-5753.Pino, Marbot, et al., 200430. m/0.25 mm/0.25 μm, He, 60. C @ 2. min, 4. K/min, 250. C @ 20. min
CapillaryCP Sil 5 CB695.Pino, Almora, et al., 200360. m/0.32 mm/0.25 μm, He, 60. C @ 10. min, 3. K/min, 280. C @ 60. min
CapillarySPB-5752.Pino, Marbot, et al., 200330. m/0.25 mm/0.25 μm, He, 60. C @ 2. min, 4. K/min, 250. C @ 20. min
CapillaryDB-5735.6Song, Lai, et al., 200330. m/0.25 mm/0.25 μm, He, 2. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-5736.7Song, Lai, et al., 200330. m/0.25 mm/0.25 μm, He, 4. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-5739.1Song, Lai, et al., 200330. m/0.25 mm/0.25 μm, He, 6. K/min; Tstart: 40. C; Tend: 310. C
CapillarySPB-5752.Pino, Marbot, et al., 200230. m/0.25 mm/0.25 μm, He, 60. C @ 2. min, 4. K/min, 250. C @ 20. min
CapillaryBPX-5741.Ames, Guy, et al., 200150. m/0.32 mm/0.5 μm, He, 60. C @ 5. min, 4. K/min, 250. C @ 10. min
CapillaryDB-1717.Kim, 200160. m/0.32 mm/1. μm, He, 40. C @ 5. min, 2. K/min; Tend: 220. C
CapillaryBPX-5756.Oruna-Concha, Duckham, et al., 200150. m/0.32 mm/0.25 μm, He, 35. C @ 3. min, 4. K/min, 250. C @ 10. min
CapillaryBPX-5756.Oruna-Concha, Duckham, et al., 200150. m/0.32 mm/0.25 μm, He, 35. C @ 3. min, 4. K/min, 250. C @ 10. min
CapillaryBPX-5756.Oruna-Concha, Duckham, et al., 200150. m/0.32 mm/0.25 μm, He, 35. C @ 3. min, 4. K/min, 250. C @ 10. min
CapillaryBPX-5757.Oruna-Concha, Duckham, et al., 200150. m/0.32 mm/0.25 μm, He, 35. C @ 3. min, 4. K/min, 250. C @ 10. min
CapillaryDB-1726.Bartelt, 199730. m/0.32 mm/5. μm, He, 35. C @ 1. min, 10. K/min; Tend: 270. C
CapillaryOV-1715.5Gautzsch and Zinn, 19968. K/min; Tstart: 35. C; Tend: 300. C
CapillaryDB-5735.6Lai and Song, 199530. m/0.25 mm/0.25 μm, He, 2. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-5736.7Lai and Song, 199530. m/0.25 mm/0.25 μm, He, 4. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-5739.1Lai and Song, 199530. m/0.25 mm/0.25 μm, He, 6. K/min; Tstart: 40. C; Tend: 310. C
CapillaryOV-101737.Golovnya, Samusenko, et al., 1988He, 2. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 100. C
CapillaryOV-101734.Golovnya, Samusenko, et al., 1988He, 8. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 70. C
CapillaryOV-101736.Golovnya, Samusenko, et al., 1988He, 4. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 80. C
PackedSE-30731.Peng, Ding, et al., 1988He, Supelcoport and Chromosorb, 40. C @ 4. min, 10. K/min, 250. C @ 60. min; Column length: 3.05 m
CapillaryDB-5736.Premecz and Ford, 1987He, 60. C @ 10. min, 10. K/min, 280. C @ 3. min; Column length: 30. m; Column diameter: 0.32 mm
CapillaryOV-1719.Schreyen, Dirinck, et al., 1976N2, 1. K/min; Column length: 183. m; Tstart: 0. C; Tend: 230. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryCP Sil 8 CB761.Duckham, Dodson, et al., 200160. m/0.25 mm/0.25 μm; Program: 0C => rapidly => 40C(8min) => 4C/min => 250C(10min)
CapillaryCP-Sil 8CB-MS749.Elmore, Mottram, et al., 200060. m/0.25 mm/0.25 μm, He; Program: 0C(5min) => 40C/min => 40C (2min) => 4C/min => 280C

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1196.Lopez-Galilea I., Fournier N., et al., 200630. m/0.32 mm/0.5 μm, He, 5. K/min, 240. C @ 10. min; Tstart: 40. C
CapillaryCP-Wax 52CB1170.Mahadevan and Farmer, 200660. C @ 5. min, 4. K/min, 220. C @ 30. min; Column length: 50. m; Column diameter: 0.32 mm
CapillaryStabilwax1168.Cros S., Lignot B., et al., 200560. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min, 240. C @ 10. min
CapillaryStabilwax1170.Cros, Lignot, et al., 200560. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min, 240. C @ 10. min
CapillaryStabilwax1170.Cros, Vandanjon, et al., 200360. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min, 240. C @ 10. min
CapillaryAT-Wax1164.Pino, Almora, et al., 200360. m/0.32 mm/0.25 μm, He, 65. C @ 10. min, 2. K/min, 250. C @ 60. min
CapillarySupelcowax-101179.Chung, Yung, et al., 200260. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min
CapillarySupelcowax-101179.Chung, Yung, et al., 200160. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min
CapillaryDB-Wax1179.Kim, 200160. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 2. K/min, 200. C @ 30. min
CapillarySupelcowax-101179.Chung, 200060. m/0.25 mm/0.25 μm, He, 2. K/min, 195. C @ 90. min; Tstart: 35. C
CapillaryDB-Wax1202.Le Guen, Prost, et al., 200060. m/0.32 mm/0.5 μm, He, 40. C @ 2. min, 4. K/min, 250. C @ 10. min
CapillarySupelcowax-101180.Chung, 199960. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min
CapillarySupelcowax-101179.Chung, 1999, 260. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min
CapillaryDB-Wax1195.Chung, Eiserich, et al., 1994He, 60. C @ 4. min, 3. K/min, 220. C @ 30. min; Column length: 60. m; Column diameter: 0.25 mm
CapillaryDB-Wax1183.Sumitani, Suekane, et al., 1994He, 40. C @ 5. min, 3. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C
CapillarySupelcowax-101174.Chung and Cadwallader, 199360. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 2. K/min, 195. C @ 40. min
CapillaryCP-WAX 57CB1182.Baltes and Mevissen, 1988He, 50. C @ 5. min, 2. K/min; Column length: 50. m; Column diameter: 0.24 mm; Tend: 210. C
CapillaryPEG-40M1194.Golovnya, Samusenko, et al., 198825. m/0.32 mm/0.80 μm, He, 2. K/min; Tstart: 100. C
CapillaryPEG-40M1191.Golovnya, Samusenko, et al., 198825. m/0.32 mm/0.80 μm, He, 8. K/min; Tstart: 70. C
CapillaryPEG-40M1192.Golovnya, Samusenko, et al., 198825. m/0.32 mm/0.80 μm, He, 8. K/min; Tstart: 70. C
CapillaryPEG-40M1189.Golovnya, Samusenko, et al., 198825. m/0.32 mm/0.80 μm, He, 4. K/min; Tstart: 80. C
CapillaryCP-WAX 57CB1209.Salter L.J., Mottram D.S., et al., 198860. C @ 5. min, 4. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tend: 200. C
CapillaryCP-WAX 57CB1209.Whitfield, Mottram, et al., 1988He, 60. C @ 5. min, 4. K/min, 200. C @ 10. min; Column length: 50. m; Column diameter: 0.32 mm
CapillaryCP-WAX 57CB1211.Whitfield, Mottram, et al., 1988He, 60. C @ 5. min, 4. K/min, 200. C @ 10. min; Column length: 50. m; Column diameter: 0.32 mm
CapillaryCAM1182.744Premecz and Ford, 1987He, 60. C @ 5. min, 5. K/min, 240. C @ 21. min; Column length: 15. m; Column diameter: 0.24 mm

Van Den Dool and Kratz RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryFFAP1218.Ranau, Kleeberg, et al., 200560. m/0.25 mm/0.5 μm, He; Program: 50C(3min) => 3C/min => 100C => 10C/min => 220C(13.5min)
CapillaryFFAP1218.Ranau and Steinhart, 200560. m/0.25 mm/0.5 μm, He; Program: 50C(3min) => 3C/min => 100C => 10C/min => 220C (13.5min)
CapillaryDB-Wax1176.Cantergiani, Brevard, et al., 200130. m/0.25 mm/0.25 μm; Program: 20C(30s) => fast => 60C => 4C/min => 220C (20min)
CapillarySupelcowax-101173.Baek and Cadwallader, 199660. m/0.25 mm/0.25 μm; Program: 40C => (6C/min) => 80C(6min) => (15C/min) => 200C(10min)
CapillarySupelcowax-101183.Sing, Smadja, et al., 199260. m/0.25 mm/0.25 μm, He; Program: 20C(0.5min) => 60C => 4C/min => 250C

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryPolydimethyl siloxane105.732.Tello, Lebron-Aguilar, et al., 2009 
CapillaryPolydimethyl siloxane75.725.Tello, Lebron-Aguilar, et al., 2009 
CapillaryPolydimethyl siloxane90.729.Tello, Lebron-Aguilar, et al., 2009 
PackedPolydimethyl siloxane120.736.Tello, Lebron-Aguilar, et al., 2009 
PackedPolydimethyl siloxane120.736.Tello, Lebron-Aguilar, et al., 2009 
PackedPolydimethyl siloxane120.738.Tello, Lebron-Aguilar, et al., 2009 
CapillaryMethyl Silicone100.732.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone120.736.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone140.742.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone80.726.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone120.736.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone120.738.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone120.739.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryOV-101130.692.Qi, Yang, et al., 2000 
PackedSynachrom150.699.Dufka, Malinsky, et al., 1971Helium, Synachrom (60-80 mesh); Column length: 1.5 m

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5 MS736.Kotowska, Zalikowski, et al., 201230. m/0.25 mm/0.25 μm, Helium, 35. C @ 5. min, 3. K/min, 300. C @ 15. min
CapillaryHP-5 MS753.Lazarevic, Radulovic, et al., 201030. m/0.25 mm/0.25 μm, Helium, 5. K/min; Tstart: 70. C; Tend: 290. C
CapillaryHP-5 MS739.Radulovic, Blagojevic, et al., 201030. m/0.25 mm/0.25 μm, Helium, 5. K/min, 290. C @ 10. min; Tstart: 70. C
CapillaryHP-5743.Radulovic, Dordevic, et al., 201030. m/0.25 mm/0.25 μm, Hydrogen, 5. K/min; Tstart: 70. C; Tend: 290. C
CapillaryHP-5 MS769.Radulovic, Dordevic, et al., 2010, 230. m/0.25 mm/0.25 μm, Helium, 5. K/min, 290. C @ 10. min; Tstart: 70. C
CapillaryZB-5742.Harrison and Priest, 200930. m/0.25 mm/0.25 μm, Helium, 40. C @ 1. min, 6. K/min, 280. C @ 9. min
CapillaryHP-5 MS740.Kim and Chung, 200930. m/0.25 mm/0.25 μm, Helium, 35. C @ 5. min, 2. K/min, 195. C @ 30. min
CapillaryVF-5740.Li and Zhao, 200930. m/0.25 mm/0.25 μm, Helium, 60. C @ 2. min, 10. K/min, 300. C @ 10. min
CapillarySPB-5748.Sivadier, Ratel, et al., 200960. m/0.32 mm/1.00 μm, 40. C @ 5. min, 3. K/min, 230. C @ 10. min
CapillarySLB-5MS762.Risticevic, Carasek, et al., 200810. m/0.18 mm/0.18 μm, Helium, 40. C @ 1.5 min, 10. K/min; Tend: 295. C
Capillary5 % Phenyl methyl siloxane751.Ramirez R. and Cava R., 200730. m/0.25 mm/1. μm, He, 40. C @ 10. min, 7. K/min, 250. C @ 5. min
CapillaryDB-5732.Fadel, Mageed, et al., 2006He, 60. C @ 5. min, 4. K/min; Column length: 60. m; Column diameter: 0.32 mm; Tend: 250. C
CapillaryDB-5727.Fadel, Mageed, et al., 2006, 2He, 50. C @ 5. min, 4. K/min; Column length: 60. m; Column diameter: 0.32 mm; Tend: 250. C
CapillaryHP-5752.5Leffingwell and Alford, 200560. m/0.32 mm/0.25 μm, He, 30. C @ 2. min, 2. K/min, 260. C @ 28. min
CapillaryMDN-5746.van Loon, Linssen, et al., 200560. m/0.25 mm/0.25 μm, He, 40. C @ 4. min, 4. K/min, 270. C @ 5. min
CapillaryMDN-5745.van Loon, Linssen, et al., 200560. m/0.25 mm/0.25 μm, He, 40. C @ 4. min, 4. K/min, 270. C @ 5. min
CapillarySPB-5752.Pino, Marbot, et al., 200530. m/0.25 mm/0.25 μm, He, 60. C @ 2. min, 4. K/min, 250. C @ 20. min
Capillary5 % Phenyl methyl siloxane751.Ramírez, Estévez, et al., 20040. m/0.25 mm/1. μm, He, 40. C @ 10. min, 7. K/min, 250. C @ 5. min
CapillaryDB-5752.Pino, Marbot, et al., 2003, 230. m/0.25 mm/0.25 μm, H2, 60. C @ 10. min, 4. K/min, 280. C @ 40. min
CapillaryHP-1712.Valette, Fernandez, et al., 200350. m/0.2 mm/0.5 μm, He, 2. K/min, 220. C @ 40. min; Tstart: 60. C
CapillarySPB-5752.Pino, Marbot, et al., 2002, 230. m/0.25 mm/0.25 μm, Helium, 60. C @ 2. min, 4. K/min, 250. C @ 20. min
CapillarySPB-5743.Poligné, Collignan, et al., 200160. m/0.32 mm/1. μm, He, 3. K/min; Tstart: 40. C; Tend: 200. C
CapillaryDB-1728.Chen and Ho, 199860. m/0.32 mm/1.0 μm, He, 3. K/min; Tstart: 40. C; Tend: 260. C
CapillaryDB-1728.Chen, Wang, et al., 199860. m/0.32 mm/1. μm, He, 3. K/min; Tstart: 40. C; Tend: 260. C
CapillaryDB-1738.Tai and Ho, 199860. m/0.32 mm/1.0 μm, He, 2. K/min; Tstart: 40. C; Tend: 280. C
CapillaryDB-1733.Lu, Yu, et al., 199760. m/0.32 mm/1. μm, He, 40. C @ 2. min, 2. K/min, 280. C @ 40. min
CapillaryDB-1712.Buttery, Stern, et al., 1994He, 30. C @ 25. min, 4. K/min, 200. C @ 20. min; Column length: 60. m; Column diameter: 0.32 mm
CapillaryOV-101695.Egolf and Jurs, 19932. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C
CapillaryDB-5741.Moio, Dekimpe, et al., 199330. m/0.32 mm/1. μm, H2, 3. K/min; Tstart: 40. C; Tend: 220. C
CapillaryDB-5744.Moio, Dekimpe, et al., 199330. m/0.32 mm/1. μm, H2, 3. K/min; Tstart: 40. C; Tend: 220. C
CapillaryDB-1694.Ishihara, Tsuneya, et al., 199260. m/0.25 mm/0.25 μm, He, 50. C @ 5. min, 3. K/min; Tend: 240. C
CapillaryDB-1702.Ishihara, Tsuneya, et al., 199260. m/0.25 mm/0.25 μm, He, 50. C @ 5. min, 3. K/min; Tend: 240. C
CapillaryDB-5751.Macku and Shibamoto, 1991He, 40. C @ 5. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 160. C
CapillaryDB-5750.Macku and Shibamoto, 1991, 2He, 40. C @ 5. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 160. C
CapillaryOV-101744.Misharina, Golovnya, et al., 199150. m/0.32 mm/0.5 μm, He, 4. K/min; Tstart: 50. C; Tend: 250. C
CapillaryHP-5712.Spadone, Takeoka, et al., 1990H2, 16. K/min; Column length: 50. m; Column diameter: 0.3 mm; Tstart: 80. C; Tend: 250. C
CapillaryHP-5739.Spadone, Takeoka, et al., 1990H2, 16. K/min; Column length: 50. m; Column diameter: 0.3 mm; Tstart: 80. C; Tend: 250. C
CapillarySE-30718.Heydanek and McGorrin, 198140. C @ 3. min, 3. K/min; Column length: 50. m; Column diameter: 0.5 mm; Tend: 170. C
CapillarySE-30720.Heydanek and McGorrin, 1981, 2He, 40. C @ 3. min, 3. K/min; Column length: 50. m; Column diameter: 0.5 mm; Tend: 170. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5 MS753.Kotowska, Zalikowski, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryHP-5 MS772.Rodrigues, Hanson, et al., 201230. m/0.32 mm/0.25 μm, Helium; Program: 40 0C (1 min) 3 0C/min -> 150 0C (15 min) 5 0C/min -> 250 0C (5 min)
CapillaryRTX-5 MS753.Mebazaa, Mahmoudi, et al., 200930. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryHP-5748.Pugliese, Sirtori, et al., 200950. m/0.32 mm/1.05 μm, Helium; Program: not specified
CapillarySLB-5MS726.Risticevic, Carasek, et al., 200810. m/0.18 mm/0.18 μm, Helium; Program: not specified
CapillaryHP-1716.Barra, Baldovini, et al., 200750. m/0.2 mm/0.33 μm, He; Program: 40C(2min) => 2C/min => 200C => 15C/min => 250C (30min)
CapillaryHP-5755.Splivallo, Bossi, et al., 2007He; Program: 50C => 3C/min => 200C(10min) => 10C/min => 290C(10min)
CapillaryPolydimethyl siloxane with 5 % Ph groups753.Pino, Marbot, et al., 2005, 2Program: not specified
CapillaryHP-5749.Garcia-Estaban, Ansorena, et al., 200450. m/0.32 mm/1.05 μm; Program: 40C(10min) => 5C/min => 200C => 20C/min => 250C(5min)
CapillaryDB-5749.Garcia-Estaban, Ansorena, et al., 2004, 250. m/0.32 mm/1.05 μm; Program: 40C(10min) => 5C/min => 200C => 20C/min => 250C (5min)
CapillarySPB-5738.Begnaud, Pérès, et al., 200360. m/0.32 mm/1. μm; Program: not specified
CapillaryCP Sil 5 CB724.Counet, Callemien, et al., 200250. m/0.32 mm/1.2 μm; Program: 36C => 20C/min => 85C => 1C/min => 145C=3C/min => 250C(30min)
CapillaryApiezon L749.Finkelstein, Kurbatova, et al., 2002Program: not specified
CapillaryCP Sil 5 CB712.Guyot-Declerck, Renson, et al., 200250. m/0.32 mm/1.2 μm, He; Program: 36C => 20C/min => 85C => 1C/min => 145C => 3C/min => 250C
CapillaryMethyl phenyl siloxane (not specified)743.Poligne, Collignan, et al., 2002Program: not specified
CapillaryCP Sil 8 CB756.Duckham, Dodson, et al., 200160. m/0.25 mm/0.25 μm; Program: not specified
CapillaryDB-5 MS759.Luo and Agnew, 200130. m/0.25 mm/1.0 μm, Helium; Program: not specified
CapillarySE-30756.Li, Gao, et al., 2000Program: not specified
CapillaryCP Sil 5 CB711.Guyot, Bouseta, et al., 199850. m/0.32 mm/1.2 μm, He; Program: 30C => 55C/min => 85C => 1C/min => 145C => 3C/min => 250C
CapillarySPB-1725.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillaryDB-5750.Mateo, Aguirrezábal, et al., 199750. m/0.32 mm/0.25 μm, He; Program: 40C(10min) => 3C/min => 95C => 10C/min => 270C(10min)
CapillaryDB-5749.Mateo and Zumalacárregui, 199650. m/0.32 mm/0.25 μm, He; Program: 40C (10min) => 3C/min => 95C => 10C/min => 270C (10min)
CapillaryDB-5750.Mateo and Zumalacárregui, 199650. m/0.32 mm/0.25 μm, He; Program: 40C (10min) => 3C/min => 95C => 10C/min => 270C (10min)
CapillarySPB-1725.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySPB-1725.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: not specified
CapillaryDB-1714.Kawai, Ishida, et al., 199160. m/0.25 mm/0.25 μm; Program: not specified
CapillaryDB-1718.Kawai, Ishida, et al., 199160. m/0.25 mm/0.25 μm; Program: not specified
CapillaryCP Sil 8 CB745.Weller and Wolf, 198940. m/0.25 mm/0.25 μm, He; Program: 30 0C (1 min) 15 0C/min -> 45 0C 3 0C/min -> 120 0C
CapillaryDB-1695.MacLeod and Snyder, 1988Program: not specified
CapillaryOV-1732.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.692.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.743.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1695.Ramsey and Flanagan, 1982Program: not specified

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-Innowax1174.Puvipirom and Chaisei, 201215. m/0.32 mm/0.50 μm, Helium, 3. K/min; Tstart: 40. C; Tend: 250. C
CapillaryDB-Wax1204.Shimadzu, 201230. m/0.32 mm/0.50 μm, Helium, 4. K/min; Tstart: 40. C; Tend: 260. C
CapillaryFFAP1199.Budryn, Nebesny, et al., 201130. m/0.32 mm/0.50 μm, Nitrogen, 35. C @ 5. min, 4. K/min, 250. C @ 45. min
CapillaryDB-Wax1204.Moon and Shibamoto, 201060. m/0.25 mm/0.50 μm, Helium, 40. C @ 5. min, 2. K/min, 210. C @ 70. min
CapillaryDB-Wax1202.Moon and Shibamoto, 200960. m/0.25 mm/0.50 μm, Helium, 40. C @ 5. min, 2. K/min, 210. C @ 70. min
CapillaryDB-Wax1203.Rochat, Egger, et al., 200930. m/0.25 mm/0.25 μm, Helium, 60. C @ 3. min, 8. K/min, 200. C @ 9.5 min
CapillaryZB-Wax1213.Marin, Pozrl, et al., 200860. m/0.32 mm/0.50 μm, Helium, 40. C @ 5. min, 4. K/min, 220. C @ 5. min
CapillaryHP-Innowax1186.Soria, Sanz, et al., 200850. m/0.20 mm/0.20 μm, Helium, 45. C @ 2. min, 4. K/min, 190. C @ 50. min
CapillaryStabilwax1170.Cros, Vandanjon, et al., 200760. m/0.25 mm/0.25 μm, Helium, 40. C @ 5. min, 3. K/min, 240. C @ 10. min
CapillaryFFAP1199.Nebesny, Budryn, et al., 200730. m/0.32 mm/0.5 μm, N2, 35. C @ 5. min, 4. K/min, 320. C @ 45. min
CapillaryDB-Wax1169.Fujioka and Shibamoto, 200660. m/0.25 mm/0.25 μm, He, 2. K/min, 200. C @ 90. min; Tstart: 50. C
CapillaryTC-Wax1200.Ishizaki, Tachihara, et al., 200560. m/0.25 mm/0.25 μm, N2, 3. K/min, 220. C @ 40. min; Tstart: 70. C
CapillaryTC-Wax1200.Ishikawa, Ito, et al., 200460. m/0.25 mm/0.5 μm, He, 40. C @ 8. min, 3. K/min; Tend: 230. C
CapillaryHP-Innowax1209.Soria, Gonzalez, et al., 200450. m/0.2 mm/0.2 μm, He, 45. C @ 2. min, 4. K/min, 190. C @ 50. min
CapillaryDB-Wax1193.Yanagimoto, Ochi, et al., 200430. m/0.25 mm/0.25 μm, He, 3. K/min, 180. C @ 40. min; Tstart: 50. C
CapillaryStabilwax1170.Cros, Vandanjon, et al., 2003, 260. m/0.25 mm/0.25 μm, Helium, 40. C @ 5. min, 3. K/min, 240. C @ 10. min
CapillaryDB-Wax1204.Shimadzu Corporation, 200330. m/0.32 mm/0.5 μm, He, 4. K/min; Tstart: 40. C; Tend: 260. C
CapillaryDB-Wax1188.Tanaka, Yamauchi, et al., 200330. m/0.25 mm/0.25 μm, 30. C @ 1. min, 4. K/min; Tend: 250. C
CapillaryDB-Wax1190.Tanaka, Yamauchi, et al., 200330. m/0.25 mm/0.25 μm, 30. C @ 1. min, 4. K/min; Tend: 250. C
CapillaryTC-Wax1170.Fukami, Ishiyama, et al., 200260. m/0.25 mm/0.25 μm, He, 2. K/min; Tstart: 50. C; Tend: 230. C
CapillaryHP-Wax1203.Sanz, Maeztu, et al., 200260. m/0.25 mm/0.5 μm, He, 40. C @ 6. min, 3. K/min; Tend: 190. C
CapillaryHP-Wax1203.Maeztu, Sanz, et al., 200160. m/0.25 mm/0.5 μm, He, 40. C @ 6. min, 3. K/min; Tend: 190. C
CapillaryHP-Wax1203.Sanz, Ansorena, et al., 200160. m/0.25 mm/0.5 μm, He, 40. C @ 6. min, 3. K/min; Tend: 190. C
CapillaryDB-Wax1190.Lee and Shibamoto, 200030. m/0.25 mm/0.25 μm, He, 3. K/min, 180. C @ 40. min; Tstart: 50. C
CapillaryCarbowax 20M1156.Xue, Ye, et al., 2000He, 60. C @ 2. min, 5. K/min, 190. C @ 20. min; Column length: 25. m; Column diameter: 0.3 mm
CapillaryDB-Wax1181.Buttery, Orts, et al., 199930. C @ 4. min, 2. K/min, 170. C @ 60. min; Column length: 60. m; Column diameter: 0.32 mm
CapillaryDB-Wax1193.Iwatsuki, Mizota, et al., 19994. K/min; Column length: 30. m; Column diameter: 0.53 mm; Tstart: 60. C; Tend: 210. C
CapillaryDB-Wax1220.Iwatsuki, Mizota, et al., 19994. K/min; Column length: 30. m; Column diameter: 0.53 mm; Tstart: 60. C; Tend: 210. C
CapillaryDB-Wax1181.Buttery and Ling, 199830. C @ 4. min, 2. K/min, 170. C @ 30. min; Column length: 60. m; Column diameter: 0.25 mm
CapillaryDB-Wax1176.Horiuchi, Umano, et al., 199860. m/0.25 mm/1. μm, He, 3. K/min, 200. C @ 40. min; Tstart: 50. C
CapillaryHP-Innowax1186.Kubec, Drhová, et al., 199830. m/0.25 mm/0.25 μm, N2, 40. C @ 3. min, 4. K/min, 190. C @ 10. min
CapillaryDB-Wax1187.Sekiwa, Kubota, et al., 1997He, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tstart: 60. C; Tend: 180. C
CapillaryPEG-20M1159.Kubota, Matsujage, et al., 199650. m/0.25 mm/0.25 μm, Nitrogen, 2. K/min; Tstart: 60. C; Tend: 180. C
CapillaryDB-Wax1183.Umano, Hagi, et al., 1995He, 40. C @ 2. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryCarbowax 20M1180.Egolf and Jurs, 19932. K/min; Column length: 80. m; Column diameter: 0.2 mm; Tstart: 70. C; Tend: 170. C
CapillaryDB-Wax1160.Hatsuko, Kazuko, et al., 1992He, 60. C @ 10. min, 3. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 240. C
CapillaryPEG-20M1168.Kubota, Nakamoto, et al., 1991N2, 2. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 60. C; Tend: 180. C
CapillaryCarbowax 20M1176.Liardon and Ledermann, 1980H2, 2. K/min; Column length: 39. m; Column diameter: 0.30 mm; Tstart: 60. C; Tend: 220. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1181.Gyawali and Kim, 201260. m/0.20 mm/0.25 μm, Helium; Program: 40 0C (3 min) 2 0C/min -> 150 0C 4 0C/min -> 220 0C (20 min) 5 0C/min -> 230 0C
CapillaryDB-FFAP1209.Mebazaa, Mahmoudi, et al., 200930. m/0.25 mm/0.25 μm, Helium; Program: 50 0C 2 0C/min -> 100 0C (5 min) 5 0C/min -> 250 0C
CapillaryDB-FFAP1193.Mebazaa, Mahmoudi, et al., 200930. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryDB-Wax1198.Gonzalez-Rios, Suarez-Quiroz, et al., 200730. m/0.25 mm/0.25 μm, Hydrogen; Program: 44 0C 3 0C/min -> 170 0C 8 0C/min -> 250 0C
CapillaryDB-Wax1180.Gonzalez-Rios, Suarez-Quiroz, et al., 200730. m/0.25 mm/0.25 μm, Hydrogen; Program: not specified
CapillaryHP-Innowax1182.Viegas and Bassoli, 200760. m/0.32 mm/0.25 μm, Helium; Program: 40 0C (5 min) 4 0C/min -> 60 0C (5 min) 8 0C/min -> 250 0C (3 min)
CapillaryHP-Innowax1181.Viegas and Bassoli, 200760. m/0.32 mm/0.25 μm, Helium; Program: not specified
CapillaryTC-Wax1200.Kraft and Switt, 2005Program: not specified
CapillaryDB-Wax1180.Kim. J.H., Ahn, et al., 200460. m/0.25 mm/0.25 μm, Helium; Program: 60 0C (3 min) 2 0C/min -> 150 0C 4 0C/min -> 200 0C
CapillaryTC-Wax1200.Tachihara, Ishizaki, et al., 2004Program: not specified
CapillaryCarbowax 20M1180.Vinogradov, 2004Program: not specified
CapillaryDB-Wax1157.Hatsuko, Kazuko, et al., 1992He; Column length: 30. m; Column diameter: 0.25 mm; Program: not specified
CapillaryDB-Wax1191.Peng, Yang, et al., 1991Program: not specified
CapillaryCarbowax1172.Baltes and Bochmann, 1987Program: not specified
CapillaryCarbowax1172.Baltes and Bochmann, 1987Program: not specified
CapillaryCarbowax1173.Baltes and Bochmann, 1987Program: not specified
CapillaryCarbowax1173.Baltes and Bochmann, 1987Program: not specified
CapillaryCarbowax1173.Baltes and Bochmann, 1987Program: not specified
CapillaryCarbowax1173.Baltes and Bochmann, 1987Program: not specified
CapillaryCarbowax1174.Baltes and Bochmann, 1987Program: not specified
CapillaryCarbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc.1224.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryCarbowax 20M1181.Ramsey and Flanagan, 1982Program: not specified
CapillaryPolyethylene Glycol1180.MacLeod and Pieris, 1981Program: not specified

Lee's RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5104.4Wang, Hou, et al., 200730. m/0.30 mm/0.25 μm, Helium, 50. C @ 5. min, 5. K/min, 200. C @ 15. min
CapillaryDB-5MS108.15Chen, Keeran, et al., 200230. m/0.25 mm/0.5 μm, 40. C @ 1. min, 10. K/min; Tend: 310. C
CapillaryDB-5MS121.47Chen, Keeran, et al., 200230. m/0.25 mm/0.5 μm, 40. C @ 1. min, 4. K/min; Tend: 310. C

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Hubbard, Frow, et al., 1961
Hubbard, W.N.; Frow, F.R.; Waddington, G., The heats of combustion and formation of pyridine and hippuric acid, J. Phys. Chem., 1961, 65, 1326-1328. [all data]

Andon, Cox, et al., 1957
Andon, R.J.L.; Cox, J.D.; Herington, E.F.G.; Martin, J.F., The second virial coefficients of pyridine and benzene, and certain of their methyl homologues, Trans. Faraday Soc., 1957, 53, 1074. [all data]

Cox, Challoner, et al., 1954
Cox, J.D.; Challoner, A.R.; Meetham, A.R., The heats of combustion of pyridine and certain of its derivatives, J. Chem. Soc., 1954, 265-271. [all data]

Constam and White, 1903
Constam, E.J.; White, J., Physico-chemical investigations in the pyridine series, Am. Chem. J., 1903, 29, 1-49. [all data]

Strepikheev, Baranov, et al., 1962
Strepikheev, Yu.A.; Baranov, Yu.I.; Burmistrova, O.A., Determination of the heats of combustion and the heat capacities of several mono- and di-isocyanates, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1962, 5, 387-390. [all data]

McCullough, Douslin, et al., 1957
McCullough, J.P.; Douslin, D.R.; Messerly, J.F.; Hossenlopp, I.A.; Kincheloe, T.C.; Waddington, G., Pyridine: experimental and calculated chemical thermodynamic properties between 0 and 1500 K., a revised vibrational assignment, J. Am. Chem. Soc., 1957, 79, 4289-4295. [all data]

Parks, Todd, et al., 1936
Parks, G.S.; Todd, S.S.; Moore, W.A., Thermal data on organic compounds. XVI. Some heat capacity, entropy and free energy data for typical benzene derivatives and heterocyclic compounds, J. Am. Chem. Soc., 1936, 58, 398-401. [all data]

Pearce and Bakke, 1936
Pearce, J.N.; Bakke, H.M., The heat capacity and the free energy of formation of pyridine, Proc. Iowa Acad. Sci., 1936, 43, 171-174. [all data]

Rastorguev and Ganiev, 1967
Rastorguev, Yu.L.; Ganiev, Yu.A., Study of the heat capacity of selected solvents, Izv. Vyssh. Uchebn. Zaved. Neft Gaz. 10, 1967, No.1, 79-82. [all data]

Swietoslawski and Zielenkiewicz, 1958
Swietoslawski, W.; Zielenkiewicz, A., Mean specific heat of some ternary azeotropes, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1958, 6, 365-366. [all data]

Radulescu and Jula, 1934
Radulescu, D.; Jula, O., Beiträge zur Bestimmung der Abstufung der Polarität des Aminstickstoffes in den organischen Verbindungen, Z. Phys. Chem., 1934, B26, 390-393. [all data]

Swietoslawski, Tybicka, et al., 1931
Swietoslawski, W.; Tybicka, S.; Solodkowska, W., Sur un microcalorimetre adiabatique, adapte aux mesures de la chaleur specifique de substances solides et liquides, Bull. Int. Acad. Pol. Sci. Lett. Cl. Sci. Math Nat. Ser A, 1931, 1931, 322-335. [all data]

Swietoslawski, Tybicka, et al., 1931, 2
Swietoslawski, W.; Tybicka, S.; Solodkowska, W., Sur un microcalorimetre adiabatique, adapte aux mesures de la chaleur specifique de substances solides et liquides, Rocz. Chem., 1931, 11, 65-77. [all data]

Mathews, Krause, et al., 1917
Mathews, J.H.; Krause, E.L.; Bohnson, B.L., a contribution to the thermal chemistry of pyridine, J. Am. Chem. Soc., 1917, 39, 398-413. [all data]

Bramley, 1916
Bramley, A., The study of binary mixtures. Part IV. Heats of reaction and specific heats, J. Chem. Soc. (London), 1916, 109, 496-515. [all data]

Helm, Lanum, et al., 1958
Helm, R.V.; Lanum, W.J.; Cook, G.L.; Ball, J.S., Purification and Properties of Pyrrole, Pyrrolidine, Pyridine and 2-Methylpyridine, J. Phys. Chem., 1958, 62, 858. [all data]

McCullough, Douslin, et al., 1957, 2
McCullough, J.P.; Douslin, D.R.; Messerly, J.F.; Hossenlopp, I.A.; Kincheloe, T.C.; Waddington, G., Pyridine: Experimental and Calculated Chemical Thermodynamic Prop- erties Between 0 and 1500 K; A Revised Vibrational Assignment, J. Am. Chem. Soc., 1957, 79, 4289. [all data]

Brunner, 1987
Brunner, E., Fluid mixtures at high pressures VI. Phase separation and critical phenomina in 18 binary mixtures containing either pyridine or ethanoic acid, J. Chem. Thermodyn., 1987, 19, 823. [all data]

Kobe, Ravicz, et al., 1956
Kobe, K.A.; Ravicz, A.E.; Vohra, S.P., Critical Properties and Vapor Pressures of Some Ethers and Heterocyclic Compounds, J. Chem. Eng. Data, 1956, 1, 50. [all data]

Herz and Neukirch, 1923
Herz, W.; Neukirch, E., On Knowldge of the Critical State, Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1923, 104, 433-50. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Ukraintseva, Soldatov, et al., 1997
Ukraintseva, E.A.; Soldatov, D.V.; Dyadin, Yu.A., Pyridine vapor pressure and thermodynamic parameters of clathrate and complex formation in the pyridine-zinc nitrate system, Zh. Neorg. Khim., 1997, 42, 2, 283. [all data]

Blanco, Beltran, et al., 1994
Blanco, Beatriz; Beltran, Sagrario; Cabezas, Jose Luis; Coca, Jose, Vapor-liquid equilibria of coal-derived liquids. 3. Binary systems with tetralin at 200 mm mercury, J. Chem. Eng. Data, 1994, 39, 1, 23-26, https://doi.org/10.1021/je00013a007 . [all data]

Lencka, 1990
Lencka, Malgorzata, Measurements of the vapour pressures of pyridine, 2-methylpyridine, 2,4-dimethylpyridine, 2,6-dimethylpyridine, and 2,4,6-trimethylpyridine from 0.1 kPa to atmospheric pressure using a modified Swietoslawski ebulliometer, The Journal of Chemical Thermodynamics, 1990, 22, 5, 473-480, https://doi.org/10.1016/0021-9614(90)90139-H . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Michou-Saucet, Jose, et al., 1986
Michou-Saucet, Marie-Annie; Jose, Jacques; Michou-Saucet, Christian, Equilibre liquide-vapeur isotherme des systemes pyridine-n-hexane et pyridine-n-heptane, Thermochimica Acta, 1986, 102, 271-279, https://doi.org/10.1016/0040-6031(86)85335-7 . [all data]

Majer, Svoboda, et al., 1984
Majer, V.; Svoboda, V.; Lencka, M., Enthalpies of vaporization and cohesive energies of pyridine and isomeric methylpyridines, J. Chem. Thermodyn., 1984, 16, 1019-1024. [all data]

Herington and Martin, 1953
Herington, E.F.G.; Martin, J.F., Vapour pressures of pyridine and its homologues, Trans. Faraday Soc., 1953, 49, 154, https://doi.org/10.1039/tf9534900154 . [all data]

Meulen and Mann, 1931
Meulen, P.A. van der.; Mann, Russell F., THE VAPOR PRESSURE OF PYRIDINE, J. Am. Chem. Soc., 1931, 53, 2, 451-453, https://doi.org/10.1021/ja01353a006 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Schafman and Wenthold, 2007
Schafman, B.S.; Wenthold, P.G., Regioselectivity of pyridine deprotonation in the gas phase, J. Org. Chem., 2007, 72, 5, 1645-1651, https://doi.org/10.1021/jo062117x . [all data]

Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A., Carbon Acidities of Aromatic Compounds, J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003 . [all data]

Kiefer, Zhang, et al., 1997
Kiefer, J.H.; Zhang, Q.; Kern, R.D.; Yao, J.; Jursic, B., Pyrolysis of Aromatic Azines: Pyrazine, Pyrimidine, and Pyridine, J. Phys. Chem. A, 1997, 101, 38, 7061, https://doi.org/10.1021/jp970211z . [all data]

DePuy, Kass, et al., 1988
DePuy, C.H.; Kass, S.R.; Bean, G.P., Formation and Reactions of Heteroaromatic Anions in the Gas Phase, J. Org. Chem., 1988, 53, 19, 4427, https://doi.org/10.1021/jo00254a001 . [all data]

Bruins, Ferrer-Correia, et al., 1978
Bruins, A.P.; Ferrer-Correia, A.J.; Harrison, A.G.; Jennings, K.R.; Mithcum, R.K., Negative ion chemical ionization mass spectrometry of some aromatic compounds using O-. as the reagent ion, Adv. Mass Spectrom., 1978, 7, 355. [all data]

Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M., Intermolecular Forces in Organic Clusters, J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024 . [all data]

Meot-Ner M. and Sieck, 1983
Meot-Ner M.; Sieck, L.W., The Ionic Hydrogen Bond. 1. Sterically Hindered Bonds. Solvation and Clustering of Sterically Hindered Amines and Pyridines, J. Am. Chem. Soc., 1983, 105, 10, 2956, https://doi.org/10.1021/ja00348a005 . [all data]

Holland and Castleman, 1982
Holland, P.M.; Castleman, A.W., The Thermochemical Properties of Gas - Phase Transition Metal Ion Complexes, J. Chem. Phys., 1982, 76, 8, 4195, https://doi.org/10.1063/1.443497 . [all data]

Meot-Ner (Mautner), 1979
Meot-Ner (Mautner), M., Ion Thermochemistry of Low Volatility Compounds in the Gas Phase. II. Intrinsic Basicities and Hydrogen Bonded Dimers of Nitrogen Heterocyclics and Nucleic Bases, J. Am. Chem. Soc., 1979, 101, 9, 2396, https://doi.org/10.1021/ja00503a027 . [all data]

Hales and Herington, 1957
Hales, J.L.; Herington, E.F.G., Equilibrium between pyridine and piperidine, Trans. Faraday Soc., 1957, 53, 616-622. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Burrows and King, 1935
Burrows, G.H.; King, L.A., Jr., The free energy change that accompanies hydrogenation of pyridine to piperidine, J. Am. Chem. Soc., 1935, 57, 1789-1791. [all data]

Hiraoka, Mizuse, et al., 1988
Hiraoka, K.; Mizuse, S.; Yamabe, S., Determination of the Stabilities and Structures of X-(C6H6) Clusters (X = Cl, Br, and I), Chem. Phys. Lett., 1988, 147, 2-3, 174, https://doi.org/10.1016/0009-2614(88)85078-4 . [all data]

Amunugama and Rodgers, 2000
Amunugama, R.; Rodgers, M.T., Absolute Alkali Metal Ion Binding Affinities of Several Azines Determined by Threshold Collision-Induced Dissociation and Ab Initio Theory, Int. J. Mass Spectrom., 2000, 195/196, 439, https://doi.org/10.1016/S1387-3806(99)00145-1 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P., Binding Energies and Stabilities of Potassium Ion Complexes from Studies of Gas Phase Ion Equilibria K+ + M = K+.M, J. Am. Chem. Soc., 1976, 98, 20, 6133, https://doi.org/10.1021/ja00436a011 . [all data]

Le Barbu, Schiedt, et al., 2002
Le Barbu, K.; Schiedt, J.; Weinkauf, R.; Schlag, E.W.; Nilles, J.M.; Xu, S.J.; Thomas, O.C.; Bowen, K.H., Microsolvation of small anions by aromatic molecules: An exploratory study, J. Chem. Phys., 2002, 116, 22, 9663-9671, https://doi.org/10.1063/1.1475750 . [all data]

Shaofeng and Pilcher, 1988
Shaofeng, L.; Pilcher, G., Enthalpy of formation of pyridine-N-oxide: the dissociation enthalpy of the (N-O) bond, J. Chem. Thermodyn., 1988, 20, 463-465. [all data]

Rodgers, Stanley, et al., 2000
Rodgers, M.T.; Stanley, J.R.; Amunugama, R., Periodic Trends in the Binding of Metal Ions to Pyridine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory, J. Am. Chem. Soc., 2000, 122, 44, 10969, https://doi.org/10.1021/ja0027923 . [all data]

Arutyunov, Kudryashov, et al., 2004
Arutyunov, Y.I.; Kudryashov, S.Y.; Onuchak, L.A., Analysis of Mixtures Containing Unknown Components by Gas Chromatography: Determination of Molecular Mass, J. Anal. Chem. USSR (Engl. Transl.), 2004, 59, 4, 358-365. [all data]

Kurbatova, Finkelstein, et al., 2004
Kurbatova, S.V.; Finkelstein, E.E.; Kolosova, E.A.; Kartashev, A.V.; Rashkin, S.V., Structural analogy method in studies of adamantanes, J. Struct. Chem., 2004, 45, 1, 144-150, https://doi.org/10.1023/B:JORY.0000041513.82837.4e . [all data]

Dallos, Sisak, et al., 2000
Dallos, A.; Sisak, A.; Kulcsár, Z.; Kováts, E., Pair-wise interactions by gas chromatography VII. Interaction free enthalpies of solutes with secondary alcohol groups, J. Chromatogr. A, 2000, 904, 2, 211-242, https://doi.org/10.1016/S0021-9673(00)00908-0 . [all data]

Garay, 2000
Garay, F., Application of a flow-tunable, serially coupled gas chromatographic capillary column system for the analysis of complex mixtures, Chromatographia Sup., 2000, 51, 1, s108-s120, https://doi.org/10.1007/BF02492792 . [all data]

Golovnya, Kuz'menko, et al., 2000
Golovnya, R.V.; Kuz'menko, T.E.; Krikunova, N.I., The influence of alkyl substituents on the chromatographic indicator of self-association of N-containing heterocyclic compounds, Russ. Chem. Bull. (Engl. Transl.), 2000, 49, 2, 321-324, https://doi.org/10.1007/BF02494681 . [all data]

Zhuravleva, 2000
Zhuravleva, I.L., Evaluation of the polarity and boiling points of nitrogen-containing heterocyclic compounds by gas chromatography, Russ. Chem. Bull. (Engl. Transl.), 2000, 49, 2, 325-328, https://doi.org/10.1007/BF02494682 . [all data]

Castello, Vezzani, et al., 1999
Castello, G.; Vezzani, S.; Gardella, L., Influence of temperature on the polarity of porous polymer beads stationary phases for gas chromatography, J. Chromatogr. A, 1999, 837, 1-2, 153-170, https://doi.org/10.1016/S0021-9673(99)00058-8 . [all data]

Golovnya, Kuz'menko, et al., 1999
Golovnya, R.V.; Kuz'menko, T.E.; Zhuravleva, I.L., Gas chromatographic indicator of the ability of five- and six-membered heterocyclic nitrogen-containing compounds for self-association in pure liquids, Russ. Chem. Bull. (Engl. Transl.), 1999, 48, 4, 726-729, https://doi.org/10.1007/BF02496256 . [all data]

Terenina, Zhuravieva, et al., 1997
Terenina, M.B.; Zhuravieva, I.L.; Golovnya, R.V., Peculiar features of sorption of positional isomers of formyl-, acetyl-, and aminopyridines in capillary gas-liquid chromatography, Russ. Chem. Bull. (Engl. Transl.), 1997, 46, 1, 86-89, https://doi.org/10.1007/BF02495353 . [all data]

Castello, Vezzani, et al., 1994
Castello, G.; Vezzani, S.; Moretti, P., The selectivity and polarity of carbon layer open tubular capillary columns modified with a polar liquid phase, J. Hi. Res. Chromatogr., 1994, 17, 1, 31-36, https://doi.org/10.1002/jhrc.1240170108 . [all data]

Gawdzik and Matynia, 1994
Gawdzik, B.; Matynia, T., Characterization of methacrylic ester of p,p'-dihydroxydiphenylpropane diglicydyl ether - divinylbenzene porous copolymers for GC, Chromatographia, 1994, 38, 9/10, 643-648, https://doi.org/10.1007/BF02277169 . [all data]

Kowalski, 1992
Kowalski, W.J., Free radical crosslinking of the gas chromatographic stationary phase containing europium chelates, Chromatographia, 1992, 34, 5-8, 266-268, https://doi.org/10.1007/BF02268356 . [all data]

Reddy, Dutoit, et al., 1992
Reddy, K.S.; Dutoit, J.-Cl.; Kovats, E. sz., Pair-wise interactions by gas chromatography. I. Interaction free enthalpies of solutes with non-associated primary alcohol groups, J. Chromatogr., 1992, 609, 1-2, 229-259, https://doi.org/10.1016/0021-9673(92)80167-S . [all data]

Zhang, Li, et al., 1992
Zhang, M.J.; Li, S.D.; Chen, B.J., Compositional studies of high-temperature coal tar by GC/FTIR analysis of light oil fractions, Chromatographia, 1992, 33, 3/4, 138-146, https://doi.org/10.1007/BF02275894 . [all data]

Dutoit, 1991
Dutoit, J., Gas chromatographic retention behaviour of some solutes on structurally similar polar and non-polar stationary phases, J. Chromatogr., 1991, 555, 1-2, 191-204, https://doi.org/10.1016/S0021-9673(01)87179-X . [all data]

Samusenko and Golovnya, 1988
Samusenko, A.L.; Golovnya, R.V., Prediction of the retention indices of methyl pyridines and pyrazines in capillary gas chromatography based on the non-linear additivity of the sorption energy, Chromatographia, 1988, 25, 6, 531-535, https://doi.org/10.1007/BF02324828 . [all data]

Betts, 1986
Betts, T.J., Triangular Characterization of Gas Chromatographic Stationary Phases, J. Chromatogr., 1986, 354, 1-6, https://doi.org/10.1016/S0021-9673(01)87005-9 . [all data]

Morishita, Morimoto, et al., 1986
Morishita, F.; Morimoto, S.; Kojima, T., Prediction of molecular structures of aza-arenes by retention indices and fluorescence spectra, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1986, 9, 11, 688-692, https://doi.org/10.1002/jhrc.1240091120 . [all data]

Samusenko, Svetlova, et al., 1986
Samusenko, A.L.; Svetlova, N.I.; Golovnya, R.V., Reproducible and durable glass capillary columns with hydrogenated apiezon-l and OV-101 for the analysis of polar substances, Zh. Anal. Khim., 1986, 61, 1, 127-133. [all data]

Osmialowski, Halkiewicz, et al., 1985
Osmialowski, K.; Halkiewicz, J.; Radecki, A.; Kaliszan, R., Quantum chemical parameters in correlation analysis of gas-liquid chromatographic retention indices of amines, J. Chromatogr., 1985, 346, 53-60, https://doi.org/10.1016/S0021-9673(00)90493-X . [all data]

Stolyarov and Kartsova, 1984
Stolyarov, B.V.; Kartsova, L.A., Comparative experimental estimation of polarity and selectivity of stationary phases in gas chromatography by means of Forschneider-McReynolds constants and on the basis of thermodynamic characteristics, Zh. Anal. Khim., 1984, 39, 5, 883-889. [all data]

Valko, Papp, et al., 1984
Valko, K.; Papp, O.; Darvas, F., Selection of Gas Chromatographic Stationary Phase Pairs for Characterization of the 1-Octanol-Water Partition Coefficient, J. Chromatogr., 1984, 301, 355-364, https://doi.org/10.1016/S0021-9673(01)89210-4 . [all data]

Castello and D'Amato, 1983
Castello, G.; D'Amato, G., Classification of the Polarity of porous polymer bead stationary phases by comparison with squalane and apolane standard liquid phases, J. Chromatogr., 1983, 269, 153-160, https://doi.org/10.1016/S0021-9673(01)90798-8 . [all data]

Winskowski, 1983
Winskowski, J., Gaschromatographische Identifizierung von Stoffen anhand von Indexziffem und unterschiedlichen Detektoren, Chromatographia, 1983, 17, 3, 160-165, https://doi.org/10.1007/BF02271041 . [all data]

Goebel, 1982
Goebel, K.-J., Gaschromatographische Identifizierung Niedrig Siedender Substanzen Mittels Retentionsindices und Rechnerhilfe, J. Chromatogr., 1982, 235, 1, 119-127, https://doi.org/10.1016/S0021-9673(00)95793-5 . [all data]

Castello and D'Amato, 1979
Castello, G.; D'Amato, G., Use of Linear and Branched-Chain Paraffinic Liquid Phases as Non-Polar Reference Materials in Gas Chromatography, J. Chromatogr., 1979, 175, 1, 27-35, https://doi.org/10.1016/S0021-9673(00)86400-6 . [all data]

Gröbler and Bálizs, 1979
Gröbler, A.; Bálizs, G., Investigations on mixed gas chromatographic stationary phases. Part I. Dependence of the retention index on the composition of the stationary phase, J. Chromatogr. Sci., 1979, 17, 11, 631-635, https://doi.org/10.1093/chromsci/17.11.631 . [all data]

Golovnya and Misharina, 1977
Golovnya, R.V.; Misharina, T.A., Characterization of the selectivity of stationary phases from the partial molar free energies of solution of standards, Chromatographia, 1977, 10, 11, 658-660, https://doi.org/10.1007/BF02268893 . [all data]

Shatts, Avots, et al., 1977
Shatts, V.D.; Avots, A.A.; Belikov, V.A., Retention indices of alkylpyridines, Zh. Anal. Khim., 1977, 32, 4, 631-638. [all data]

Riedo, Fritz, et al., 1976
Riedo, F.; Fritz, D.; Tarján, G.; Kováts, E.Sz., A tailor-made C87 hydrocarbon as a possible non-polar standard stationary phase for gas chromatography, J. Chromatogr., 1976, 126, 63-83, https://doi.org/10.1016/S0021-9673(01)84063-2 . [all data]

Zhuravleva, Kapustin, et al., 1976
Zhuravleva, I.L.; Kapustin, Yu.P.; Golovnya, P.B., Retention indices of some isoaliphatic and heterocyclic nitrogenous bases, Zh. Anal. Khim., 1976, 31, 1378-1380. [all data]

Ashes and Haken, 1974
Ashes, J.R.; Haken, J.K., Gas chromatography of homologous esters. VI. Structure-retention increments of aliphatic esters, J. Chromatogr., 1974, 101, 1, 103-123, https://doi.org/10.1016/S0021-9673(01)94737-5 . [all data]

Bark and Wheatstone, 1974
Bark, L.S.; Wheatstone, K.C., Studies in the relationship between molecular structure and chromatographic behaviour. Gas chromatographic study of monoalkylpyridines, J. Chromatogr., 1974, 92, 2, 281-289, https://doi.org/10.1016/S0021-9673(00)85738-6 . [all data]

Anderson, Jurel, et al., 1973
Anderson, A.; Jurel, S.; Shymanska, M.; Golender, L., Gas-liquid chromatography of some aliphatic and heterocyclic mono- and pollyfunctional amines. VII. Retention indices of amines in some polar and unpolar stationary phases, Latv. PSR Zinat. Akad. Vestis Kim. Ser., 1973, 1, 51-63. [all data]

Reymond, Mueggler-Chavan, et al., 1966
Reymond, D.; Mueggler-Chavan, F.; Viani, R.; Vuataz, L.; Egli, R.H., Gas chromatographic analysis of steam volatile aroma constituents: application to coffee, tea and cocoa aromas, J. Gas Chromatogr., 1966, 4, 1, 28-31, https://doi.org/10.1093/chromsci/4.1.28 . [all data]

Viani, Müggler-Chavan, et al., 1965
Viani, R.; Müggler-Chavan, F.; Reymond, D.; Egli, R.H., 196. Sur la composition de l'arôme de café, Helv. Chim. Acta, 1965, 48, 195-196, 1809-1815, https://doi.org/10.1002/hlca.19650480743 . [all data]

Takeoka, Perrino, et al., 1996
Takeoka, G.; Perrino, C., Jr.; Buttery, R., Volatile constituents of used frying oils, J. Agric. Food Chem., 1996, 44, 3, 654-660, https://doi.org/10.1021/jf950430m . [all data]

Shibamoto, Kamiya, et al., 1981
Shibamoto, T.; Kamiya, Y.; Mihara, S., Isolation and identification of volatile compounds in cooked meat: sukiyaki, J. Agric. Food Chem., 1981, 29, 1, 57-63, https://doi.org/10.1021/jf00103a015 . [all data]

Yamaguchi and Shibamoto, 1979
Yamaguchi, K.; Shibamoto, T., Volatile constituents of Castanopsis flower, J. Agric. Food Chem., 1979, 27, 4, 847-850, https://doi.org/10.1021/jf60224a025 . [all data]

SGE, 2005
SGE, Guide to GC column selection, 2005, retrieved from http://www.sge.com/htm/support/productselection/prodselgc.asp. [all data]

Castello, Timossi, et al., 1988
Castello, G.; Timossi, A.; Gerbino, T.C., Gas Chromatographic Separation of Halogenated Compounds on Non-Polar and Polar Wide Bore Capillary Columns, J. Chromatogr., 1988, 454, 129-143, https://doi.org/10.1016/S0021-9673(00)88608-2 . [all data]

Moffat, Stead, et al., 1974
Moffat, A.C.; Stead, A.H.; Smalldon, K.W., Optimum use of paper, thin-layer and gas-liquid chromatography for the identification of basic drugs. III. Gas-liquid chromatography, J. Chromatogr., 1974, 90, 1, 19-33, https://doi.org/10.1016/S0021-9673(01)94770-3 . [all data]

Golovnya, Samusenko, et al., 1987
Golovnya, R.V.; Samusenko, A.L.; Dmitriev, L.B., Predicting retention indices of methyl-substituted pyridines in gas capillary chromatogrpahy on the basis of the principle of the nonadditive change in the energy of sorption, Izv. Akad. Nauk SSSR Ser. Khim., 1987, 10, 2234-2239. [all data]

Kersten and Poole, 1987
Kersten, B.R.; Poole, C.F., Influence of concurrent retention mechanisms on the determination of stationary phase selectivity in gas chromatography, J. Chromatogr., 1987, 399, 1-31, https://doi.org/10.1016/S0021-9673(00)96108-9 . [all data]

Shimoda and Shibamoto, 1990
Shimoda, M.; Shibamoto, T., Isolation and identification of headspace volatiles from brewed coffee with an on-column GC/MS method, J. Agric. Food Chem., 1990, 38, 3, 802-804, https://doi.org/10.1021/jf00093a045 . [all data]

Tatsuka, Suekane, et al., 1990
Tatsuka, K.; Suekane, S.; Sakai, Y.; Sumitani, H., Volatile constituents of kiwi fruit flowers: simultaneous distillation and extraction versus headspace sampling, J. Agric. Food Chem., 1990, 38, 12, 2176-2180, https://doi.org/10.1021/jf00102a015 . [all data]

MacLeod and Pieris, 1983
MacLeod, A.J.; Pieris, N.M., Volatile components of papaya (Carica papaya L.) with particular reference to glucosinolate products, J. Agric. Food Chem., 1983, 31, 5, 1005-1008, https://doi.org/10.1021/jf00119a021 . [all data]

Slizhov and Gavrilenko, 2001
Slizhov, Yu.G.; Gavrilenko, M.A., Effect of thermal treatment of poly(ethylene glycol) modified with europium acetylacetonate on its chromatographic properties, Russ. J. Phys. Chem. (Engl. Transl.), 2001, 75, 6, 1012-1013. [all data]

Methven L., Tsoukka M., et al., 2007
Methven L.; Tsoukka M.; Oruna-Concha M.J.; Parker J.K.; Mottram D.S., Influence of sulfur amino acids on the volatile and nonvolatile components of cooked salmon (Salmo salar), J. Agric. Food Chem., 2007, 55, 4, 1427-1436, https://doi.org/10.1021/jf0625611 . [all data]

Estevez, Ventanas, et al., 2005
Estevez, M.; Ventanas, S.; Ramirez, R.; Cava, R., Influence of the Addition of Rosemary Essential Oil on the Volatiles Pattern of Porcine Frankfurters, J. Agric. Food Chem., 2005, 53, 21, 8317-8324, https://doi.org/10.1021/jf051025q . [all data]

Pino, Mesa, et al., 2005
Pino, J.A.; Mesa, J.; Muñoz, Y.; Martí, M.P.; Marbot, R., Volatile components from mango (Mangifera indica L.) cultivars, J. Agric. Food Chem., 2005, 53, 6, 2213-2223, https://doi.org/10.1021/jf0402633 . [all data]

Hierro, de la Hoz, et al., 2004
Hierro, E.; de la Hoz, L.; Ordóñez, J.A., Headspace volatile compounds from salted and occasionally smoked dried meats (cecinas) as affected by animal species, Food Chem., 2004, 85, 4, 649-657, https://doi.org/10.1016/j.foodchem.2003.07.001 . [all data]

Pino, Marbot, et al., 2004
Pino, J.A.; Marbot, R.; Rosado, A.; Vázquez, C., Volatile constituents of Malay rose apple [Syzygium malaccense (L.) Merr. Perry], Flavour Fragr. J., 2004, 19, 1, 32-35, https://doi.org/10.1002/ffj.1269 . [all data]

Pino, Almora, et al., 2003
Pino, J.; Almora, K.; Marbot, R., Volatile components of papaya (Carica papaya L., maradol variety) fruit, Flavour Fragr. J., 2003, 18, 6, 492-496, https://doi.org/10.1002/ffj.1248 . [all data]

Pino, Marbot, et al., 2003
Pino, J.; Marbot, R.; Rosado, A.; Vázquez, C., Volatile constituents of fruits of Garcinia dulcis Kurz. from Cuba, Flavour Fragr. J., 2003, 18, 4, 271-274, https://doi.org/10.1002/ffj.1187 . [all data]

Song, Lai, et al., 2003
Song, C.; Lai, W.-C.; Madhusudan Reddy, K.; Wei, B., Chapter 7. Temperature-programmed retention indices for GC and GC-MS of hydrocarbon fuels and simulated distillation GC of heavy oils in Analytical advances for hydrocarbon research, Hsu,C.S., ed(s)., Kluwer Academic/Plenum Publishers, New York, 2003, 147-193. [all data]

Pino, Marbot, et al., 2002
Pino, J.; Marbot, R.; Rosado, A., Volatile constituents of star apple (Chrysophyllum cainito L.) from Cuba, Flavour Fragr. J., 2002, 17, 5, 401-403, https://doi.org/10.1002/ffj.1116 . [all data]

Ames, Guy, et al., 2001
Ames, J.M.; Guy, R.C.E.; Kipping, G.J., Effect of pH and temperature on the formation of volatile compounds in cysteine/reducing sugar/starch mixtures during extrusion cooking, J. Agric. Food Chem., 2001, 49, 4, 1885-1894, https://doi.org/10.1021/jf0012547 . [all data]

Kim, 2001
Kim, J.S., Einfluss der Temperatur beim Rösten von Sesam auf Aroma und antioxidative Eigenschaften des Öls, PhD Thesis, Technischen Universität Berlin zur Erlangung des akademischen Grades, Berlin, 2001, 151. [all data]

Oruna-Concha, Duckham, et al., 2001
Oruna-Concha, M.J.; Duckham, S.C.; Ames, J.M., Comparison of volatile compounds isolated from the skin and flesh of four potato cultivars after baking, J. Agric. Food Chem., 2001, 49, 5, 2414-2421, https://doi.org/10.1021/jf0012345 . [all data]

Bartelt, 1997
Bartelt, R.J., Calibration of a commercial solid-phase microextraction device for measuring headspace concentrations of organic volatiles, Anal. Chem., 1997, 69, 3, 364-372, https://doi.org/10.1021/ac960820n . [all data]

Gautzsch and Zinn, 1996
Gautzsch, R.; Zinn, P., Use of incremental models to estimate the retention indexes of aromatic compounds, Chromatographia, 1996, 43, 3/4, 163-176, https://doi.org/10.1007/BF02292946 . [all data]

Lai and Song, 1995
Lai, W.-C.; Song, C., Temperature-programmed retention indices for g.c. and g.c.-m.s. analysis of coal- and petroleum-derived liquid fuels, Fuel, 1995, 74, 10, 1436-1451, https://doi.org/10.1016/0016-2361(95)00108-H . [all data]

Golovnya, Samusenko, et al., 1988
Golovnya, R.V.; Samusenko, A.L.; Lyapin, V.A., Prediction of linear temperature programmed retention indices of methylpyridines in capillary gas chromatography, Zh. Anal. Khim., 1988, 63, 2, 311-317. [all data]

Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C., Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns, J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8 . [all data]

Premecz and Ford, 1987
Premecz, J.E.; Ford, M.E., Gas chromatographic separation of substituted pyridines, J. Chromatogr., 1987, 388, 23-35, https://doi.org/10.1016/S0021-9673(01)94463-2 . [all data]

Schreyen, Dirinck, et al., 1976
Schreyen, L.; Dirinck, P.; van Wassenhove, F.; Schamp, N., Volatile flavor components of leek, J. Agric. Food Chem., 1976, 24, 2, 336-341, https://doi.org/10.1021/jf60204a056 . [all data]

Duckham, Dodson, et al., 2001
Duckham, S.C.; Dodson, A.T.; Bakker, J.; Ames, J.M., Volatile flavour components of baked potato flesh. A comparison of eleven potato cultivars, Nahrung/Food, 2001, 45, 5, 317-323, https://doi.org/10.1002/1521-3803(20011001)45:5<317::AID-FOOD317>3.0.CO;2-4 . [all data]

Elmore, Mottram, et al., 2000
Elmore, J.S.; Mottram, D.S.; Enser, M.; Wood, J.D., The effects of diet and breed on the volatile compounds of cooked lamb, Meat Sci., 2000, 55, 2, 149-159, https://doi.org/10.1016/S0309-1740(99)00137-0 . [all data]

Lopez-Galilea I., Fournier N., et al., 2006
Lopez-Galilea I.; Fournier N.; Cid C.; Guichard E., Changes in headspace volatile concentrations of coffee brews caused by the roasting process and the brewing procedure, J. Agric. Food Chem., 2006, 54, 22, 8560-8566, https://doi.org/10.1021/jf061178t . [all data]

Mahadevan and Farmer, 2006
Mahadevan, K.; Farmer, L., Key Odor Impact Compounds in Three Yeast Extract Pastes, J. Agric. Food Chem., 2006, 54, 19, 7242-7250, https://doi.org/10.1021/jf061102x . [all data]

Cros S., Lignot B., et al., 2005
Cros S.; Lignot B.; Bourseau P.; Jaouen P., Reverse osmosis for the production of aromatic concentrates from mussel cooking juices: a technical assessment, Desalination, 2005, 180, 1-3, 263-269, https://doi.org/10.1016/j.desal.2005.01.008 . [all data]

Cros, Lignot, et al., 2005
Cros, S.; Lignot, B.; Bourseau, P.; Jaouen, P.; Prost, C., Desalination of mussel cooking juices by electrodialysis: effect on the aroma profile, J. Food Eng., 2005, 69, 4, 425-436, https://doi.org/10.1016/j.jfoodeng.2004.08.036 . [all data]

Cros, Vandanjon, et al., 2003
Cros, S.; Vandanjon, L.; Jaouen, P.; Bourseau, P., Processing of industrial mussel cooking juices by reverse osmosis: pollution abatement and aromas recovery, 2003, retrieved from http://www.membrane.unsw.edu.au/imstec03/content/papers/DAI/imstec064.pdf. [all data]

Chung, Yung, et al., 2002
Chung, H.-Y.; Yung, I.K.S.; Ma, W.C.J.; Kim, J.-S., Analysis of volatile components in frozen and dried scallops (Patinopecten yessoensis) by gas chromatography/mass spectrometry, Food Res. Int., 2002, 35, 1, 43-53, https://doi.org/10.1016/S0963-9969(01)00107-7 . [all data]

Chung, Yung, et al., 2001
Chung, H.Y.; Yung, I.K.S.; Kim, J.-S., Comparison of volatile components in dried scallops (Chlamys farreri and Patinopecten yessoensis) prepared by boiling and steaming methods, J. Agric. Food Chem., 2001, 49, 1, 192-202, https://doi.org/10.1021/jf000692a . [all data]

Chung, 2000
Chung, H.Y., Volatile flavor components in red fermented soybean (Glycine max) curds, J. Agric. Food Chem., 2000, 48, 5, 1803-1809, https://doi.org/10.1021/jf991272s . [all data]

Le Guen, Prost, et al., 2000
Le Guen, S.; Prost, C.; Demaimay, M., Characterization of odorant compounds of mussels (Mytilus edulis) according to their origin using gas chromatography-olfactometry and gas chromatography-mass spectrometry, J. Chromatogr. A, 2000, 896, 1-2, 361-371, https://doi.org/10.1016/S0021-9673(00)00729-9 . [all data]

Chung, 1999
Chung, H.Y., Volatile components in crabmeats of Charybdis feriatus, J. Agric. Food Chem., 1999, 47, 6, 2280-2287, https://doi.org/10.1021/jf981027t . [all data]

Chung, 1999, 2
Chung, H.Y., Volatile components in fermented soybean (Glycine max) curds, J. Agric. Food Chem., 1999, 47, 7, 2690-2696, https://doi.org/10.1021/jf981166a . [all data]

Chung, Eiserich, et al., 1994
Chung, T.Y.; Eiserich, J.P.; Shibamoto, T., Volatile compounds produced from peanut oil heated with different amounts of cysteine, J. Agric. Food Chem., 1994, 42, 8, 1743-1746, https://doi.org/10.1021/jf00044a032 . [all data]

Sumitani, Suekane, et al., 1994
Sumitani, H.; Suekane, S.; Nakatani, A.; Tatsuka, K., Changes in composition of volatile compounds in high pressure treated peach, J. Agric. Food Chem., 1994, 42, 3, 785-790, https://doi.org/10.1021/jf00039a037 . [all data]

Chung and Cadwallader, 1993
Chung, H.Y.; Cadwallader, K.R., Volatile components in blue crab (Callinectes sapidus) meat and processing by-product, J. Food Sci., 1993, 58, 6, 1203-1207, https://doi.org/10.1111/j.1365-2621.1993.tb06148.x . [all data]

Baltes and Mevissen, 1988
Baltes, W.; Mevissen, L., Model reactions on roast aroma formation. VI. Volatile reaction products from the reaction of phenylalanine with glucose during cooking and roasting, Z. Lebensm. Unters. Forsch., 1988, 187, 3, 209-214, https://doi.org/10.1007/BF01043341 . [all data]

Salter L.J., Mottram D.S., et al., 1988
Salter L.J.; Mottram D.S.; Whitfield, Volatile compounds produces in Maillard reactions involving glycine, ribose and phospholid, J. Sci. Food Agric., 1988, 46, 2, 227-242, https://doi.org/10.1002/jsfa.2740460211 . [all data]

Whitfield, Mottram, et al., 1988
Whitfield, F.B.; Mottram, D.S.; Brock, S.; Puckey, D.J.; Salter, L.J., Effect of Phospholipid on the Formation of Volatile Heterocyclic Compounds in Heated Aqueous Solutions of Amino Acids and Ribose, J. Sci. Food Agric., 1988, 42, 3, 261-272, https://doi.org/10.1002/jsfa.2740420309 . [all data]

Ranau, Kleeberg, et al., 2005
Ranau, R.; Kleeberg, K.K.; Schlegelmilch, M.; Streese, J.; Stegmann, R.; Steinhart, H., Analytical determination of the suitability of different processes for the treatment of odorous waste gas, Waste Management, 2005, 25, 9, 908-916, https://doi.org/10.1016/j.wasman.2005.07.004 . [all data]

Ranau and Steinhart, 2005
Ranau, R.; Steinhart, H., Identification and evaluation of volatile odor-active pollutants from different odor emission sources in the food industry, Eur. Food Res. Technol., 2005, 220, 2, 226-231, https://doi.org/10.1007/s00217-004-1073-4 . [all data]

Cantergiani, Brevard, et al., 2001
Cantergiani, E.; Brevard, H.; Krebs, Y.; Feria-Morales, A.; Amadò, R.; Yeretzian, C., Characterisation of the aroma of green Mexican coffee and identification of mouldy/earthy defect, Eur. Food Res. Technol., 2001, 212, 6, 648-657, https://doi.org/10.1007/s002170100305 . [all data]

Baek and Cadwallader, 1996
Baek, H.H.; Cadwallader, K.R., Volatile compounds in flavor concentrates produced from crayfish-processing byproducts with and without protease treatment, J. Agric. Food Chem., 1996, 44, 10, 3262-3267, https://doi.org/10.1021/jf960023q . [all data]

Sing, Smadja, et al., 1992
Sing, A.S.C.; Smadja, J.; Brevard, H.; Maignial, L.; Chaintreau, A.; Marion, J.-P., Volatile constituents of faham (Jumellea fragrans (Thou.) Schltr.), J. Agric. Food Chem., 1992, 40, 4, 642-646, https://doi.org/10.1021/jf00016a024 . [all data]

Tello, Lebron-Aguilar, et al., 2009
Tello, A.M.; Lebron-Aguilar, R.; Quintanilla-Lopez, J.E.; Santiuste, J.M., Isothermal retention indices on poly93-cyanopropylmethyl)siloxane stationary phases, J. Chromatogr. A, 2009, 1216, 10, 1630-1639, https://doi.org/10.1016/j.chroma.2008.10.025 . [all data]

Lebrón-Aguilar, Quintanilla-López, et al., 2007
Lebrón-Aguilar, R.; Quintanilla-López, J.E.; Tello, A.M.; Santiuste, J.M., Isothermal retention indices on poly (3,3,3-trifluoropropylmethylsiloxane) stationary phases, J. Chromatogr. A, 2007, 1160, 1-2, 276-288, https://doi.org/10.1016/j.chroma.2007.05.025 . [all data]

Qi, Yang, et al., 2000
Qi, Y.; Yang, J.; Xu, L., correlation analysis of the structures and gas liquid chromatographic retention indices of amines, Chin. J. Anal. Chem., 2000, 28, 2, 223-227. [all data]

Dufka, Malinsky, et al., 1971
Dufka, O.; Malinsky, J.; Vladyka, J., Sorpcni materialy pro plynovou chromatographii - III, Chemicky promysl., 1971, 21/46, 9, 459-463. [all data]

Kotowska, Zalikowski, et al., 2012
Kotowska, U.; Zalikowski, M.; Isidorov, V.A., HS-SPME/GC-MS analysis of volatile and semi-volatile organic compounds emitted from municipal sewage sludge, Environ. Monit. Asses., 2012, 184, 5, 2893-2907, https://doi.org/10.1007/s10661-011-2158-8 . [all data]

Lazarevic, Radulovic, et al., 2010
Lazarevic, J.; Radulovic, N.; Palic, R.; Zlatkovic, B., Chemical Analusis of volatile constituents of Berula erecta (Hudson) Coville subsp. erecta (Apiaceae) from Serbia, J. Essential Oil. Res., 2010, 22, 3, 153-156, https://doi.org/10.1080/10412905.2010.9700290 . [all data]

Radulovic, Blagojevic, et al., 2010
Radulovic, N.; Blagojevic, P.; Palic, R., Comparative study of the leaf volatiles of Arctostaphylos uva-ursi (L.) Spreng. and Vaccinium vitis-idaea L. (Ericaceae), Molecules, 2010, 15, 9, 6168-6185, https://doi.org/10.3390/molecules15096168 . [all data]

Radulovic, Dordevic, et al., 2010
Radulovic, N.S.; Dordevic, N.D.; Palic, R.M., Volatiles of Pleurospermum austriacum (L.) Hoffm. (Apiaceae), J. Serbian Chem. Soc., 2010, 75, 12, 1-11, https://doi.org/10.2298/JSC100323127R . [all data]

Radulovic, Dordevic, et al., 2010, 2
Radulovic, N.; Dordevic, N.; Markovic, M.; Palic, R., Volatile constituents of Glechoma Hirsuta Waldst. Kit. and G. Hederacea L. (Lamiaceae), Bull. Chem. Soc. Ethiop., 2010, 24, 1, 67-76, https://doi.org/10.4314/bcse.v24i1.52962 . [all data]

Harrison and Priest, 2009
Harrison, B.M.; Priest, F.G., Composition of peaks used in the preparation of malt for Scotch Whisky production - influence of geographical source and extraction depth, J. Agric. Food Chem., 2009, 57, 6, 2385-2391, https://doi.org/10.1021/jf803556y . [all data]

Kim and Chung, 2009
Kim, J.-S.; Chung, H.Y., GC-MS analysis of the volatile components in dried boxthorn (Lycium chimensis) Fruit, J. Korean Soc. Appl. Biol. Chem., 2009, 52, 5, 516-524, https://doi.org/10.3839/jksabc.2009.088 . [all data]

Li and Zhao, 2009
Li, L.; Zhao, J., Determination of the volatile composition of Rhodobryum giganteum (Schwaegr.) Par. (Bryaceae) using solid-phase microextraction and gas chromatography / mass spectrometry (GC/MS), Molecules, 2009, 14, 6, 2195-2201, https://doi.org/10.3390/molecules14062195 . [all data]

Sivadier, Ratel, et al., 2009
Sivadier, G.; Ratel, J.; Engel, E., Latency and persistence of diet volatile biomarkers in lamb fats, J. Agric. Food Chem., 2009, 57, 2, 645-652, https://doi.org/10.1021/jf802467q . [all data]

Risticevic, Carasek, et al., 2008
Risticevic, S.; Carasek, E.; Pawliszyn, J., Headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric methodology for geographical origin verification of coffee, Anal. Chim. Acta, 2008, 617, 1-2, 72-84, https://doi.org/10.1016/j.aca.2008.04.009 . [all data]

Ramirez R. and Cava R., 2007
Ramirez R.; Cava R., Volatile profiles of dry-cured meat products from three different Iberian x Duroc genotypes, J. Agric. Food Chem., 2007, 55, 5, 1923-1931, https://doi.org/10.1021/jf062810l . [all data]

Fadel, Mageed, et al., 2006
Fadel, H.H.M.; Mageed, M.A.A.; Lotfy, S.N., Quality and flavour stability of coffee substitute prepared by extrusion of wheat germ and chicory roots, Amino Acids, 2006, https://doi.org/10.1007/s007260200008 . [all data]

Fadel, Mageed, et al., 2006, 2
Fadel, H.H.M.; Mageed, M.A.A.; Samad, A.K.M.E.A.; Lotfy, S.N., Cocoa substitute: Evaluation of sensory qualities and flavour stability, Eur. Food Res. Technol., 2006, 223, 1, 125-131, https://doi.org/10.1007/s00217-005-0162-3 . [all data]

Leffingwell and Alford, 2005
Leffingwell, J.C.; Alford, E.D., Volatile constituents of Perique tobacco, Electron. J. Environ. Agric. Food Chem., 2005, 4, 2, 899-915. [all data]

van Loon, Linssen, et al., 2005
van Loon, W.A.M.; Linssen, J.P.H.; Legger, A.; Posthumus, M.A.; Voragen, A.G.J., Identification and olfactometry of French fries flavour extracted at mouth conditions, Food Chem., 2005, 90, 3, 417-425, https://doi.org/10.1016/j.foodchem.2004.05.005 . [all data]

Pino, Marbot, et al., 2005
Pino, J.A.; Marbot, R.; Rosado, A.; Vázquez, C., Volatile constituents of genipap (Genipa americana L.) fruit from Cuba, Flavour Fragr. J., 2005, 20, 6, 583-586, https://doi.org/10.1002/ffj.1491 . [all data]

Ramírez, Estévez, et al., 2004
Ramírez, M.R.; Estévez, M.; Morcuende, D.; Cava, R., Effect of the type of frying culinary fat on volatile compounds isolated in fried pork loin chops by using SPME-GC-MS, J. Agric. Food Chem., 2004, 52, 25, 7637-7643, https://doi.org/10.1021/jf049207s . [all data]

Pino, Marbot, et al., 2003, 2
Pino, J.A.; Marbot, R.; Fuentes, V., Characterization of volatiles in Bullock's heart (Annona reticulata L.) fruit cultivars from Cuba, J. Agric. Food Chem., 2003, 51, 13, 3836-3839, https://doi.org/10.1021/jf020733y . [all data]

Valette, Fernandez, et al., 2003
Valette, L.; Fernandez, X.; Poulain, S.; Loiseau, A.-M.; Lizzani-Cuvelier, L.; Levieil, R.; Restier, L., Volatile constituents from Romanesco cauliflower, Food Chem., 2003, 80, 3, 353-358, https://doi.org/10.1016/S0308-8146(02)00272-8 . [all data]

Pino, Marbot, et al., 2002, 2
Pino, J.A.; Marbot, R.; Vazquez, C., Characterization of volatiles in Loquat fruit (Eriobotrya japonica Lindl.), Revista CENIC Ciencias Quimicas, 2002, 33, 3, 115-119. [all data]

Poligné, Collignan, et al., 2001
Poligné, I.; Collignan, A.; Trystram, G., Characterization of traditional processing of pork meat into boucané, Meat Sci., 2001, 59, 4, 377-389, https://doi.org/10.1016/S0309-1740(01)00090-0 . [all data]

Chen and Ho, 1998
Chen, J.; Ho, C.-T., Volatile compounds formed from thermal degradation of glucosamine in a dry system, J. Agric. Food Chem., 1998, 46, 5, 1971-1974, https://doi.org/10.1021/jf971021o . [all data]

Chen, Wang, et al., 1998
Chen, J.; Wang, M.; Ho, C.-T., Volatile compounds generated from thermal degradation of N-acetylglucosamine, J. Agric. Food Chem., 1998, 46, 8, 3207-3209, https://doi.org/10.1021/jf980129g . [all data]

Tai and Ho, 1998
Tai, C.-Y.; Ho, C.-T., Influence of glutathione oxidation and pH on thermal formation of Maillard-type volatile compounds, J. Agric. Food Chem., 1998, 46, 6, 2260-2265, https://doi.org/10.1021/jf971111t . [all data]

Lu, Yu, et al., 1997
Lu, G.; Yu, T.-H.; Ho, C.-T., Generation of flavor compounds by the reaction of 2-deoxyglucose with selected amino acids, J. Agric. Food Chem., 1997, 45, 1, 233-236, https://doi.org/10.1021/jf960609c . [all data]

Buttery, Stern, et al., 1994
Buttery, R.G.; Stern, D.J.; Ling, L.C., Studies on flavor volatiles of some sweet corn products, J. Agric. Food Chem., 1994, 42, 3, 791-795, https://doi.org/10.1021/jf00039a038 . [all data]

Egolf and Jurs, 1993
Egolf, L.M.; Jurs, P.C., Quantitative structure-retention and structure-odor intensity relationships for a diverse group of odor-active compounds, Anal. Chem., 1993, 65, 21, 3119-3126, https://doi.org/10.1021/ac00069a027 . [all data]

Moio, Dekimpe, et al., 1993
Moio, L.; Dekimpe, J.; Etievant, P.; Addeo, F., Neutral volatile compounds in the raw milks from different species, J. Dairy Res., 1993, 60, 2, 199-213, https://doi.org/10.1017/S0022029900027515 . [all data]

Ishihara, Tsuneya, et al., 1992
Ishihara, M.; Tsuneya, T.; Shiga, M.; Kawashima, S.; Yamagishi, K.; Yoshida, F.; Sato, H.; Uneyama, K., New pyridine derivatives and basic components in spearmint oil (Mentha gentilis f. cardiaca) and peppermint oil (Mentha piperita), J. Agric. Food Chem., 1992, 40, 9, 1647-1655, https://doi.org/10.1021/jf00021a034 . [all data]

Macku and Shibamoto, 1991
Macku, C.; Shibamoto, T., Headspace volatile compounds formed from heated corn oil and corn oil with glycine, J. Agric. Food Chem., 1991, 39, 7, 1265-1269, https://doi.org/10.1021/jf00007a014 . [all data]

Macku and Shibamoto, 1991, 2
Macku, C.; Shibamoto, T., Volatile sulfur-containing compounds generated from the thermal interaction of corn oil and cysteine, J. Agric. Food Chem., 1991, 39, 11, 1987-1989, https://doi.org/10.1021/jf00011a021 . [all data]

Misharina, Golovnya, et al., 1991
Misharina, T.A.; Golovnya, R.V.; Charnomskii, V.V., Volatile components of boiled shrimp funchalia woodwardi and crab geryon maritae, Zh. Anal. Khim., 1991, 46, 1421-1429. [all data]

Spadone, Takeoka, et al., 1990
Spadone, J.-C.; Takeoka, G.; Liardon, R., Analytical Investigation of Rio Off-Flavor in Green Coffee, J. Agric. Food Chem., 1990, 38, 1, 226-233, https://doi.org/10.1021/jf00091a050 . [all data]

Heydanek and McGorrin, 1981
Heydanek, M.G.; McGorrin, R.J., Gas chromatography-mass spectroscopy identification of volatiles from rancid oat groats, J. Agric. Food Chem., 1981, 29, 5, 1093-1095, https://doi.org/10.1021/jf00107a051 . [all data]

Heydanek and McGorrin, 1981, 2
Heydanek, M.G.; McGorrin, R.J., Gas chromatography-mass spectroscopy investigations on the flavor chemistry of oat groats, J. Agric. Food Chem., 1981, 29, 5, 950-954, https://doi.org/10.1021/jf00107a016 . [all data]

Rodrigues, Hanson, et al., 2012
Rodrigues, C.I.I.; Hanson, C.M.; Nogueira, J.M.F., Coffees and industrial blends aroma profile discrimination according to the chromatic value, Coffee Sci, Lavras, 2012, 7, 2, 167-176. [all data]

Mebazaa, Mahmoudi, et al., 2009
Mebazaa, R.; Mahmoudi, A.; Fouchet, M.; Dos Santos, M.; Kamissoko, F.; Nafti, A.; Ben Cheikh, R.; Rega, B.; Camel, V., Characterization of volatile compounds in Tunisian fenugreek seeds, Food Chem., 2009, 115, 4, 1326-1336, https://doi.org/10.1016/j.foodchem.2009.01.066 . [all data]

Pugliese, Sirtori, et al., 2009
Pugliese, C.; Sirtori, F.; Ruiz, J.; Martin, D.; Parenti, S.; Franci, O., Effect of pasture on chestnut or acorn on fatty acid composition and aromatic profile of fat of China Senece dry-cured ham, Gracas y Aceites, 2009, 60, 3, 271-276, https://doi.org/10.3989/gya.130208 . [all data]

Barra, Baldovini, et al., 2007
Barra, A.; Baldovini, N.; Loiseau, A.-M.; Albino, L.; Lesecq, C.; Cuvelier, L.L., Chemical analysis of French beans (Phaseolus vulgaris L.) by headspace solid phase microextraction (HS-SPME) and simultaneous distillation/extraction (SDE), Food Chem., 2007, 101, 3, 1279-1284, https://doi.org/10.1016/j.foodchem.2005.12.027 . [all data]

Splivallo, Bossi, et al., 2007
Splivallo, R.; Bossi, S.; Maffei, M.; Bonfante, P., Discrimination of truffle fruiting body versus mycelial aromas by stir bar sorptive extraction, Phytochemistry, 2007, 68, 20, 2584-2598, https://doi.org/10.1016/j.phytochem.2007.03.030 . [all data]

Pino, Marbot, et al., 2005, 2
Pino, J.A.; Marbot, R.; Rosado, A.; Vázquez, C., Volatile constituents of Malay rose apple [Syzygium malaccense (L.) Merr. Perry], Flavour Fragr. J., 2005, 20, 98-100. [all data]

Garcia-Estaban, Ansorena, et al., 2004
Garcia-Estaban, M.; Ansorena, D.; Astiasaran, I.; Martin, D.; Ruiz, J., Comparison of simultaneous distillation extraction (SDE) and solid-phase microextraction (SPME) for the analysis of volatile compounds in dry-cured ham, J. Sci. Food Agric., 2004, 84, 11, 1364-1370, https://doi.org/10.1002/jsfa.1826 . [all data]

Garcia-Estaban, Ansorena, et al., 2004, 2
Garcia-Estaban, M.; Ansorena, D.; Astiasarán, I.; Ruiz, J., Study of the effect of different fiber coatings and extraction conditions on dry cured ham volatile compounds extracted by solid-phase microextraction (SPME), Talanta, 2004, 64, 2, 458-466, https://doi.org/10.1016/j.talanta.2004.03.007 . [all data]

Begnaud, Pérès, et al., 2003
Begnaud, F.; Pérès, C.; Berdagué, J.-L., Characterization of volatile effluents of livestock buildings by solid-phase microextraction, Int. J. Environ. Anal. Chem., 2003, 83, 10, 837-849, https://doi.org/10.1080/03067310310001603349 . [all data]

Counet, Callemien, et al., 2002
Counet, C.; Callemien, D.; Ouwerx, C.; Collin, S., Use of gas chromatography-olfactometry to identify key odorant compounds in dark chocolate. Comparison of samples before and after conching, J. Agric. Food Chem., 2002, 50, 8, 2385-2391, https://doi.org/10.1021/jf0114177 . [all data]

Finkelstein, Kurbatova, et al., 2002
Finkelstein, E.E.; Kurbatova, S.V.; Kolosova, E.A., Study of biological activity of structure analogies of adamantane, Proc. Samara State Univ., 2002, 26, 4, 121-128. [all data]

Guyot-Declerck, Renson, et al., 2002
Guyot-Declerck, C.; Renson, S.; Bouseta, A.; Collin, S., Floral quality and discrimination of Lavandula stoechas, Lavandula angustifolia, and Lavandula angustifolia × latifolia honeys, Food Chem., 2002, 79, 4, 453-459, https://doi.org/10.1016/S0308-8146(02)00216-9 . [all data]

Poligne, Collignan, et al., 2002
Poligne, I.; Collignan, A.; Trystram, G., Effects of salting, drying, cooking, and smoking operations on volatile compound formation and collor patterns in pork, Food Eng. Physical Properties, 2002, 67, 8, 2976-2986. [all data]

Luo and Agnew, 2001
Luo, J.; Agnew, M.P., Gas characteristics before and after biofiltration treating odorous emissions from animal rendering processes, Environ. Technol., 2001, 22, 9, 1091-1103, https://doi.org/10.1080/09593332208618220 . [all data]

Li, Gao, et al., 2000
Li, R.; Gao, S.-G.; Xiang, B.-R., Using improved BP neural network in predicting GC retention indices, Computers appl. chem. (Chinese), 2000, 17, 1-2, 113-114. [all data]

Guyot, Bouseta, et al., 1998
Guyot, C.; Bouseta, A.; Scheirman, V.; Collin, S., Floral origin markers of chestnut and lime tree honeys, J. Agric. Food Chem., 1998, 46, 2, 625-633, https://doi.org/10.1021/jf970510l . [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Mateo, Aguirrezábal, et al., 1997
Mateo, J.; Aguirrezábal, M.; Domínguez, C.; Zumalacárregui, J.M., Volatile compounds in Spanish paprika, J. Food Comp. Anal., 1997, 10, 3, 225-232, https://doi.org/10.1006/jfca.1997.0535 . [all data]

Mateo and Zumalacárregui, 1996
Mateo, J.; Zumalacárregui, J.M., Volatile compounds in chorizo and their changes during ripening, Meat Sci., 1996, 44, 4, 255-273, https://doi.org/10.1016/S0309-1740(96)00028-9 . [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Kawai, Ishida, et al., 1991
Kawai, T.; Ishida, Y.; Kakiuchi, H.; Ikeda, N.; Higashida, T.; Nakamura, S., Flavor components of dried squid, J. Agric. Food Chem., 1991, 39, 4, 770-777, https://doi.org/10.1021/jf00004a031 . [all data]

Weller and Wolf, 1989
Weller, J.-P.; Wolf, M., Massenspektroskopie und Headspace-GC, Beitr. Gerichtl. Med., 1989, 47, 525-532. [all data]

MacLeod and Snyder, 1988
MacLeod, A.J.; Snyder, C.H., Volatile components of mango preserved by deep freezing, J. Agric. Food Chem., 1988, 36, 1, 137-139, https://doi.org/10.1021/jf00079a035 . [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J., Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse, J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5 . [all data]

Puvipirom and Chaisei, 2012
Puvipirom, J.; Chaisei, S., Contribution of roasted grains and seeds in aroma of oleang (Thai coffee drink), Int. Food Res. J., 2012, 19, 2, 583-588. [all data]

Shimadzu, 2012
Shimadzu, Pharmaceutical Related, Analysis of pharmaceutical residual solvent (observation of separation) (1) - GC, 2012, retrieved from www.shimadzu.ru/applications/Applicationspdf/GC/Pharma/Pharmaceutical residual solvents GC.pdf. [all data]

Budryn, Nebesny, et al., 2011
Budryn, G.; Nebesny, E.; Kula, J.; Majda, T.; Krysiak, W., HS-SPME/GC/MS Profiles of convectively and microwave roasted Ivory Coast Robusta coffee brews, Czech. J. Food Sci., 2011, 29, 2, 151-160. [all data]

Moon and Shibamoto, 2010
Moon, J.-K.; Shibamoto, T., Formation of volatile chemicals from thermal degradation of less volatile cofee components: quinic acid, caffeic acid, and chlorogenic acid, J. Agric. Food Chem., 2010, 58, 9, 5465-5470, https://doi.org/10.1021/jf1005148 . [all data]

Moon and Shibamoto, 2009
Moon, J.-K.; Shibamoto, T., Role of roasting conditions in the profile of volatile flavor chemicals formed from coffee beans, J. Agric. Food Chem., 2009, 57, 13, 5823-5831, https://doi.org/10.1021/jf901136e . [all data]

Rochat, Egger, et al., 2009
Rochat, S.; Egger, J.; Chaintreau, A., Strategy for the identification of key odorants: application to shrimp aroma, J. Chromatogr. A, 2009, 1216, 36, 6424-6432, https://doi.org/10.1016/j.chroma.2009.07.014 . [all data]

Marin, Pozrl, et al., 2008
Marin, K.; Pozrl, T.; Zlatic, E.; Plestenjak, A., A new aroma index to determine the aroma quality of roasted and ground coffee during storage, Food Technol. Biotechnol., 2008, 46, 4, 442-447. [all data]

Soria, Sanz, et al., 2008
Soria, A.C.; Sanz, J.; Martinez-Castro, I., SPME followed by GC-MS: a powerful technique for qualitative analysis of honey volatiles, Eur. Food Res. Technol., 2008, 1-12. [all data]

Cros, Vandanjon, et al., 2007
Cros, S.; Vandanjon, L.; Jaouen, P.; Bourseau, P., Processing of Industrial Mussel Cooking Juices by Reverse Osmotis: Pollution Abatement and Aromas Recovery, 2007, retrieved from title of Internet file: [imstec064]. [all data]

Nebesny, Budryn, et al., 2007
Nebesny, E.; Budryn, G.; Kula, J.; Majda, T., The effect of roasting method on headspace composition of robusta coffee bean aroma, Eur. Food Res. Technol., 2007, 225, 1, 9-19, https://doi.org/10.1007/s00217-006-0375-0 . [all data]

Fujioka and Shibamoto, 2006
Fujioka, K.; Shibamoto, T., Quantitation of volatiles and nonvolatile acids in an extract from coffee beverages: correlation with antioxidant activity, J. Agric. Food Chem., 2006, 54, 16, 6054-6058, https://doi.org/10.1021/jf060460x . [all data]

Ishizaki, Tachihara, et al., 2005
Ishizaki, S.; Tachihara, T.; Tamura, H.; Yanai, T.; Kitahara, T., Evaluation of odour-active compounds in roasted shrimp (Sergia lucens Hansen) by aroma extract dilution analysis, Flavour Fragr. J., 2005, 20, 6, 562-566, https://doi.org/10.1002/ffj.1484 . [all data]

Ishikawa, Ito, et al., 2004
Ishikawa, M.; Ito, O.; Ishizaki, S.; Kurobayashi, Y.; Fujita, A., Solid-phase aroma concentrate extraction (SPACE ): a new headspace technique for more sensitive analysis of volatiles, Flavour Fragr. J., 2004, 19, 3, 183-187, https://doi.org/10.1002/ffj.1322 . [all data]

Soria, Gonzalez, et al., 2004
Soria, A.C.; Gonzalez, M.; de Lorenzo, C.; Martinez-Castro, I.; Sanza, J., Characterization of artisanal honeys from Madrid (Central Spain) on the basis of their melissopalynological, physicochemical and volatile composition data, Food Chem., 2004, 85, 1, 121-130, https://doi.org/10.1016/j.foodchem.2003.06.012 . [all data]

Yanagimoto, Ochi, et al., 2004
Yanagimoto, K.; Ochi, H.; Lee, K.-G.; Shibamoto, T., Antioxidative activities of fractions obtained from brewed coffee, J. Agric. Food Chem., 2004, 52, 3, 592-596, https://doi.org/10.1021/jf030317t . [all data]

Cros, Vandanjon, et al., 2003, 2
Cros, S.; Vandanjon, L.; Jaouen, P.; Bourseau, P., IMSTEC'03 Conference Proceedings, Processing of industrial mussel cooking juices by reverse osmosis: pollution abatement and aromas recovery, Universoty of New South Wales, Sydney, Australia, 2003, 6. [all data]

Shimadzu Corporation, 2003
Shimadzu Corporation, Analysis of pharmaceutical residual solvent (observation of separation), 2003, retrieved from http://www.shimadzu.com.br/analitica/aplicacoes/book/pharm69.pdf. [all data]

Tanaka, Yamauchi, et al., 2003
Tanaka, T.; Yamauchi, T.; Katsumata, R.; Kiuchi, K., Comparison of volatile components in commercial Itohiki-Natto by solid phase microextraction and gas chromatography, Nippon Shokuhin Kagaku Kogaku Kaishi, 2003, 50, 6, 278-285, https://doi.org/10.3136/nskkk.50.278 . [all data]

Fukami, Ishiyama, et al., 2002
Fukami, K.; Ishiyama, S.; Yaguramaki, H.; Masuzawa, T.; Nabeta, Y.; Endo, K.; Shimoda, M., Identification of distinctive volatile compounds in fish sauce, J. Agric. Food Chem., 2002, 50, 19, 5412-5416, https://doi.org/10.1021/jf020405y . [all data]

Sanz, Maeztu, et al., 2002
Sanz, C.; Maeztu, L.; Zapelena, M.J.; Bello, J.; Cid, C., Profiles of volatile compounds and sensory analysis of three blends of coffee: influence of different proportions of Arabica and Robusta and influence of roasting coffee with sugar, J. Sci. Food Agric., 2002, 82, 8, 840-847, https://doi.org/10.1002/jsfa.1110 . [all data]

Maeztu, Sanz, et al., 2001
Maeztu, L.; Sanz, C.; Andueza, S.; de Peña, M.P.; Bello, J.; Cid, C., Characterization of espresso coffee aroma by static headspace GC-MS and sensory flavor profile, J. Agric. Food Chem., 2001, 49, 11, 5437-5444, https://doi.org/10.1021/jf0107959 . [all data]

Sanz, Ansorena, et al., 2001
Sanz, C.; Ansorena, D.; Bello, J.; Cid, C., Optimizing headspace temperature and time sampling for identification of volatile compounds in ground roasted Arabica coffee, J. Agric. Food Chem., 2001, 49, 3, 1364-1369, https://doi.org/10.1021/jf001100r . [all data]

Lee and Shibamoto, 2000
Lee, K.-G.; Shibamoto, T., Antioxidant properties of aroma compounds isolated from soybeans and mung beans, J. Agric. Food Chem., 2000, 48, 9, 4290-4293, https://doi.org/10.1021/jf000442u . [all data]

Xue, Ye, et al., 2000
Xue, C.; Ye, M.; Li, Z.; Cai, Y.; Tan, L.; Lin, H.; Sakaguchi, M., Changes in the volatile compounds of Yellowtail (Seriola aureovitata) during refrigerated storage, Asian Fisheries Sciences, 2000, 13, 263-270. [all data]

Buttery, Orts, et al., 1999
Buttery, R.G.; Orts, W.J.; Takeoka, G.R.; Nam, Y., Volatile flavor components of rice cakes, J. Agric. Food Chem., 1999, 47, 10, 4353-4356, https://doi.org/10.1021/jf990140w . [all data]

Iwatsuki, Mizota, et al., 1999
Iwatsuki, K.; Mizota, Y.; Kubota, T.; Nishimura, O.; Masuda, H.; Sotoyama, K.; Tomita, M., Aroma extract dilution analysis. Evluation of aroma of pasteurized and UHT processed milk by aroma extract dilution analysis, Nippon Shokuhin Kagaku Kogaku Kaishi, 1999, 46, 9, 587-597, https://doi.org/10.3136/nskkk.46.587 . [all data]

Buttery and Ling, 1998
Buttery, R.G.; Ling, L.C., Additional studies on flavor components of corn tortilla chips, J. Agric. Food Chem., 1998, 46, 7, 2764-2769, https://doi.org/10.1021/jf980125b . [all data]

Horiuchi, Umano, et al., 1998
Horiuchi, M.; Umano, K.; Shibamoto, T., Analysis of volatile compounds formed from fish oil heated with cysteine and trimethylamine oxide, J. Agric. Food Chem., 1998, 46, 12, 5232-5237, https://doi.org/10.1021/jf980482m . [all data]

Kubec, Drhová, et al., 1998
Kubec, R.; Drhová, V.; Velísek, J., Thermal degradation of S-methylcysteine and its sulfoxide-important flavor precursors of Bassica and Allium vegetables, J. Agric. Food Chem., 1998, 46, 10, 4334-4340, https://doi.org/10.1021/jf980379x . [all data]

Sekiwa, Kubota, et al., 1997
Sekiwa, Y.; Kubota, K.; Kobayashi, A., Characteristic flavor components in the brew of cooked clam (Meretrix lusoria) and the effect of storage on flavor formation, J. Agric. Food Chem., 1997, 45, 3, 826-830, https://doi.org/10.1021/jf960433e . [all data]

Kubota, Matsujage, et al., 1996
Kubota, K.; Matsujage, Y.; Sekiwa, Y.; Kobayashi, A., Identification of the characteristic volatile flavor compounds formed by cooking squid (Todarodes pacificus Steenstrup), Food Sci. Technol., 1996, 2, 3, 163-166. [all data]

Umano, Hagi, et al., 1995
Umano, K.; Hagi, Y.; Nakahara, K.; Shyoji, A.; Shibamoto, T., Volatile chemicals formed in the headspace of a heated D-glucose/L-cysteine Maillard model system, J. Agric. Food Chem., 1995, 43, 8, 2212-2218, https://doi.org/10.1021/jf00056a046 . [all data]

Hatsuko, Kazuko, et al., 1992
Hatsuko, S.; Kazuko, H.; Masayoshi, K.; Yoshiaki, I., Improvement of quality of likorine extract by heat treatment, J. Food Sci. Technol., 1992, 39, 11, 976-983, https://doi.org/10.3136/nskkk1962.39.976 . [all data]

Kubota, Nakamoto, et al., 1991
Kubota, K.; Nakamoto, A.; Moriguchi, M.; Kobayashi, A.; Ishii, H., Formation of pyrrolidino[1,2-e]-4H-2,4-dimethyl-1,3,5-dithiazine in the volatiles of boiled short-necked clam, clam, and corbicula, J. Agric. Food Chem., 1991, 39, 6, 1127-1130, https://doi.org/10.1021/jf00006a027 . [all data]

Liardon and Ledermann, 1980
Liardon, R.; Ledermann, S., volatile components of fermented soya hydrolysate. II. Composition of basic fraction, Z. Lebensm. Unters. Forsch., 1980, 170, 3, 208-213, https://doi.org/10.1007/BF01042542 . [all data]

Gyawali and Kim, 2012
Gyawali, R.; Kim, K.-S., Bioactive volatile compounds of three medicinal plants from Nepal, Kathmandu Univ. J. Sci., Engineering and Technol., 2012, 8, 1, 51-62. [all data]

Gonzalez-Rios, Suarez-Quiroz, et al., 2007
Gonzalez-Rios, O.; Suarez-Quiroz, M.L.; Boulanger, R.; Barel, M.; Guyot, B.; Guiraud, J.-P.; Schorr-Galindo, S., Impact of ecological post-harvest processing of coffee aroma: II Roasted coffee., J. Food Composition Analysis, 2007, 20, 3-4, 297-307, https://doi.org/10.1016/j.jfca.2006.12.004 . [all data]

Viegas and Bassoli, 2007
Viegas, M.C.; Bassoli, D.G., Utilizacao do indice de retencao linear para caracterizacao de compostos volateis em cafe soluvel utilizando GC-MS e coluna HP-Innowax, Quim. Nova, 2007, 30, 8, 2031-2034, https://doi.org/10.1590/S0100-40422007000800040 . [all data]

Kraft and Switt, 2005
Kraft, P.; Switt, K.A.D. (Eds), Perspectives in Flavor and Fragrance Research, Wiley-VCH, Weinheim, Germany, 2005, 251. [all data]

Kim. J.H., Ahn, et al., 2004
Kim. J.H.; Ahn, H.J.; Yook, H.S.; Kim, K.S.; Rhee, M.S.; Ryu, G.H.; Byun, M.W., Color, flavor, and sensory characteristics of gamma-irradiated salted and fermented anchovy sauce, Radiation Phys. Chem., 2004, 69, 2, 179-187, https://doi.org/10.1016/S0969-806X(03)00400-6 . [all data]

Tachihara, Ishizaki, et al., 2004
Tachihara, T.; Ishizaki, S.; Ishikawa, M.; Kitahara, T., Studies on the volatile compounds of roasted spotted shrimp, Chemistry Biodiversity, 2004, 1, 12, 2024-2033, https://doi.org/10.1002/cbdv.200490155 . [all data]

Vinogradov, 2004
Vinogradov, B.A., Production, composition, properties and application of essential oils, 2004, retrieved from http://viness.narod.ru. [all data]

Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F., Prediction of rentention idexes. II. Structure-retention index relationship on polar columns, J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F . [all data]

Baltes and Bochmann, 1987
Baltes, W.; Bochmann, G., Model reactions on roast aroma formations, V. Mass spectrometric identification of pyrifines, oxazoles, and carbocyclic compounds from the reaction of serine and threonine with sucrose under the conditions of coffee roasting, Z. Lebensm. Unters. Forsch., 1987, 185, 1, 5-9, https://doi.org/10.1007/BF01083331 . [all data]

MacLeod and Pieris, 1981
MacLeod, A.J.; Pieris, N.M., Volatile flavor components of beli fruit (Aegle marmelos) and a processed product, J. Agric. Food Chem., 1981, 29, 6, 1262-1264, https://doi.org/10.1021/jf00108a040 . [all data]

Wang, Hou, et al., 2007
Wang, G.; Hou, Z.; Sun, Y.; Liu, Y.; Xie, B.; Liu, S., Investigation of pyrolysis behavior of fenoxycarb using PY-GC-MS assisted with chemometric methods, Chem. Anal., 2007, 52, 141-156. [all data]

Chen, Keeran, et al., 2002
Chen, P.H.; Keeran, W.S.; Van Ausdale, W.A.; Schindler, D.R.; Roberts, D.W., Application of Lee retention indices to the confirmation of tentatively identified compounds from GC/MS analysis of environmental samples, Technical paper, Analytical Services Division, Environmental ScienceEngineering, Inc, PO Box 1703, Gainesville, FL 32602, 2002, 11. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas Chromatography, References