Butane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-30.03 ± 0.16kcal/molCcbPittam and Pilcher, 1972ALS
Δfgas-30.37 ± 0.16kcal/molCmProsen, Maron, et al., 1951see Prosen and Rossini, 1945; ALS
Quantity Value Units Method Reference Comment
Δcgas-687.75 ± 0.15kcal/molCcbPittam and Pilcher, 1972Corresponding Δfgas = -30.03 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcgas-687.42 ± 0.15kcal/molCmProsen, Maron, et al., 1951see Prosen and Rossini, 1945; Corresponding Δfgas = -30.36 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcgas-687.94 ± 0.15kcal/molCcbRossini, 1934Corresponding Δfgas = -29.84 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
9.09950.Chen S.S., 1975Recommended values are in good agreement with those calculated by [ Pitzer K.S., 1944, Pitzer K.S., 1946].; GT
13.23100.
16.09150.
18.27200.
22.06273.15
23.54298.15
23.65300.
29.821400.
35.531500.
40.459600.
44.699700.
48.370800.
51.561900.
54.3401000.
56.7591100.
58.8601200.
60.6911300.
62.2801400.
63.6711500.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
26.429344.9Dailey B.P., 1943Other experimental values of heat capacity [ Sage B.H., 1937] are believed to be less reliable, see [ Chen S.S., 1975].; GT
27.469359.6
29.099387.5
32.980451.6
36.809521.0
38.781561.3
40.710600.8
44.419692.6

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
liquid55.21cal/mol*KN/AAston and Messerly, 1940Using extrapolated values of Cp 273 to 298 K for the superheated liquid.
liquid54.21cal/mol*KN/AParks, Shomate, et al., 1937Calculated from heat capacity data reported by 31HUF/PAR. Extrapolation below 67 K, 41.34 J/mol*K.
liquid54.90cal/mol*KN/AHuffman, Parks, et al., 1931Extrapolation below 90 K, 48.95 J/mol*K. Extrapolated above 262 K.

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
31.649270.Aston and Messerly, 1940T = 11 to 270 K.
31.00261.8Huffman, Parks, et al., 1931T = 69 to 262 K. Value is unsmoothed experimental datum.

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil273. ± 1.KAVGN/AAverage of 33 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus136. ± 3.KAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple134.6 ± 0.7KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Ptriple0.000007atmN/AYounglove and Ely, 1987Uncertainty assigned by TRC = 8.×10-9 atm; TRC
Ptriple0.000007atmN/AHaynes and Goodwin, 1982TRC
Quantity Value Units Method Reference Comment
Tc425. ± 1.KAVGN/AAverage of 18 values; Individual data points
Quantity Value Units Method Reference Comment
Pc37.45 ± 0.09atmAVGN/AAverage of 15 out of 16 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.255l/molN/AAmbrose and Tsonopoulos, 1995 
Vc0.263l/molN/ALi and Kiran, 1988Uncertainty assigned by TRC = 0.01 l/mol; TRC
Vc0.2551l/molN/AYounglove and Ely, 1987Uncertainty assigned by TRC = 0.001 l/mol; TRC
Vc0.258l/molN/ABeattie, Simard, et al., 1939Uncertainty assigned by TRC = 0.003 l/mol; from graphical plot of isotherms; TRC
Quantity Value Units Method Reference Comment
ρc3.92 ± 0.03mol/lAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Δvap5.35kcal/molN/AReid, 1972AC

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
5.3511272.05N/AAston and Messerly, 1940P = 101.325 kPa; DH
5.363272.7N/AMajer and Svoboda, 1985 
5.47308.N/ASako, Horiguchi, et al., 1997Based on data from 300. to 315. K.; AC
5.59277.AStephenson and Malanowski, 1987Based on data from 195. to 292. K.; AC
5.54288.AStephenson and Malanowski, 1987Based on data from 273. to 321. K.; AC
5.40331.AStephenson and Malanowski, 1987Based on data from 316. to 383. K.; AC
5.45390.AStephenson and Malanowski, 1987Based on data from 375. to 425. K.; AC
6.5198.AStephenson and Malanowski, 1987Based on data from 135. to 213. K. See also Carruth and Kobayashi, 1973.; AC
5.52264.N/AWackher, Linn, et al., 1945Based on data from 206. to 279. K. See also Boublik, Fried, et al., 1984.; AC
5.02 ± 0.02272.66VAston and Messerly, 1940, 2Reanalyzed by Pedley, Naylor, et al., 1986, Original value = 5.35 ± 0.15 kcal/mol; hfusion=1.11 kcal/mol; ALS
5.71258.N/AAston and Messerly, 1940Based on data from 195. to 273. K. See also Boublik, Fried, et al., 1984.; AC

Entropy of vaporization

ΔvapS (cal/mol*K) Temperature (K) Reference Comment
19.67272.05Aston and Messerly, 1940P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
135.42 to 212.894.702411200.475-13.013Carruth and Kobayashi, 1973Coefficents calculated by NIST from author's data.
272.66 to 425.4.350051175.581-2.071Das, Reed, et al., 1973Coefficents calculated by NIST from author's data.
195.11 to 272.813.84431909.65-36.146Aston and Messerly, 1940Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kcal/mol) Temperature (K) Method Reference Comment
8.58107.BGeiseler, Quitzsch, et al., 1966AC

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
1.11134.9Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
4.555107.6Domalski and Hearing, 1996CAL
8.260134.9

Enthalpy of phase transition

ΔHtrs (kcal/mol) Temperature (K) Initial Phase Final Phase Reference Comment
0.4940107.55crystaline, IIcrystaline, IAston and Messerly, 1940DH
1.114134.86crystaline, IliquidAston and Messerly, 1940DH
0.5060107.0crystaline, IIcrystaline, IHuffman, Parks, et al., 1931DH
1.045134.1crystaline, IliquidHuffman, Parks, et al., 1931DH

Entropy of phase transition

ΔStrs (cal/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
4.594107.55crystaline, IIcrystaline, IAston and Messerly, 1940DH
8.260134.86crystaline, IliquidAston and Messerly, 1940DH
4.73107.0crystaline, IIcrystaline, IHuffman, Parks, et al., 1931DH
7.79134.1crystaline, IliquidHuffman, Parks, et al., 1931DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
MS - José A. Martinho Simões
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C4H9- + Hydrogen cation = Butane

By formula: C4H9- + H+ = C4H10

Quantity Value Units Method Reference Comment
Δr415.7 ± 2.0kcal/molBranDePuy, Gronert, et al., 1989gas phase; The HOF(Et(Me)N.) in Seetula, Russell, et al., 1990 gives BDE(N-H) = 99 kcal/mol, ca. 5 kcal/mol too strong; B
Δr417.1 ± 4.8kcal/molBranPeerboom, Rademaker, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr407.1 ± 2.1kcal/molH-TSDePuy, Gronert, et al., 1989gas phase; The HOF(Et(Me)N.) in Seetula, Russell, et al., 1990 gives BDE(N-H) = 99 kcal/mol, ca. 5 kcal/mol too strong; B
Δr408.5 ± 4.9kcal/molH-TSPeerboom, Rademaker, et al., 1992gas phase; B

C4H9Li (l) + Hydrogen bromide (g) = Butane (l) + Lithium bromide (cr)

By formula: C4H9Li (l) + HBr (g) = C4H10 (l) + BrLi (cr)

Quantity Value Units Method Reference Comment
Δr-89.39 ± 0.48kcal/molRSCHolm, 1974Please also see Pedley and Rylance, 1977. The reaction enthalpy was quoted from Pedley and Rylance, 1977. See Liebman, Martinho Simões, et al., 1995 for comments; MS

Hydrogen bromide (g) + C4H9Li (l) = Butane (l) + Lithium bromide (cr)

By formula: HBr (g) + C4H9Li (l) = C4H10 (l) + BrLi (cr)

Quantity Value Units Method Reference Comment
Δr-84.30 ± 0.48kcal/molRSCHolm, 1974Please also see Pedley and Rylance, 1977. The reaction enthalpy was quoted from Pedley and Rylance, 1977. See Liebman, Martinho Simões, et al., 1995 for comments; MS

2Hydrogen + 2-Butyne = Butane

By formula: 2H2 + C4H6 = C4H10

Quantity Value Units Method Reference Comment
Δr-65.10 ± 0.30kcal/molChydConn, Kistiakowsky, et al., 1939gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -65.58 ± 0.13 kcal/mol; At 355 K; ALS

Hydrogen + 2-Butene, (E)- = Butane

By formula: H2 + C4H8 = C4H10

Quantity Value Units Method Reference Comment
Δr-27.38 ± 0.10kcal/molChydKistiakowsky, Ruhoff, et al., 1935gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -27.621 ± 0.021 kcal/mol; At 355 °K; ALS

Hydrogen + 2-Butene, (Z)- = Butane

By formula: H2 + C4H8 = C4H10

Quantity Value Units Method Reference Comment
Δr-28.33 ± 0.10kcal/molChydKistiakowsky, Ruhoff, et al., 1935gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -28.570 ± 0.019 kcal/mol; At 355 °K; ALS

1,3-Butadiene + 2Hydrogen = Butane

By formula: C4H6 + 2H2 = C4H10

Quantity Value Units Method Reference Comment
Δr-56.57 ± 0.10kcal/molChydKistiakowsky, Ruhoff, et al., 1936gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -57.1 ± 0.1 kcal/mol; At 355 °K; ALS

C4H9Li (l) + Water (g) = Butane (g) + HLiO (cr)

By formula: C4H9Li (l) + H2O (g) = C4H10 (g) + HLiO (cr)

Quantity Value Units Method Reference Comment
Δr-57.41 ± 0.69kcal/molRSCFowell and Mortimer, 1961Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS

C4H9ClMg (cr) + (Hydrogen chloride • 556Water) (solution) = Butane (g) + (Cl2Mg • 900Water) (solution)

By formula: C4H9ClMg (cr) + (HCl • 556H2O) (solution) = C4H10 (g) + (Cl2Mg • 900H2O) (solution)

Quantity Value Units Method Reference Comment
Δr-73.09 ± 0.43kcal/molRSCGenchel, Evstigneeva, et al., 1976MS

C4H9BrMg (solution) + Hydrogen bromide (g) = Butane (solution) + Br2Mg (solution)

By formula: C4H9BrMg (solution) + HBr (g) = C4H10 (solution) + Br2Mg (solution)

Quantity Value Units Method Reference Comment
Δr-69.91 ± 0.53kcal/molRSCHolm, 1981solvent: Diethyl ether; MS

C4H9BrMg (solution) + Hydrogen bromide (g) = Butane (solution) + Br2Mg (solution)

By formula: C4H9BrMg (solution) + HBr (g) = C4H10 (solution) + Br2Mg (solution)

Quantity Value Units Method Reference Comment
Δr-73.11 ± 0.53kcal/molRSCHolm, 1981solvent: Diethyl ether; MS

C5O5W (g) + Butane (g) = C9H10O5W (g)

By formula: C5O5W (g) + C4H10 (g) = C9H10O5W (g)

Quantity Value Units Method Reference Comment
Δr-9.1 ± 3.0kcal/molEqGBrown, Ishikawa, et al., 1990Temperature range: ca. 300-350 K; MS

1-Butene + Hydrogen = Butane

By formula: C4H8 + H2 = C4H10

Quantity Value Units Method Reference Comment
Δr-30.10 ± 0.10kcal/molChydKistiakowsky, Ruhoff, et al., 1935gas phase; At 355 °K; ALS

Butane = Isobutane

By formula: C4H10 = C4H10

Quantity Value Units Method Reference Comment
Δr-2.318kcal/molEqkPines, Kvetinskas, et al., 1945gas phase; Heat of isomerization; ALS

3Hydrogen + 1-Buten-3-yne = Butane

By formula: 3H2 + C4H4 = C4H10

Quantity Value Units Method Reference Comment
Δr-100.8 ± 0.5kcal/molChydRoth, Adamczak, et al., 1991liquid phase; ALS

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.0011 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
0.0011 LN/A 
0.00123100.LN/A 
0.0011 VN/A 
0.0049 VN/A 

Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Trans form     Symmetry:   C2h     Symmetry Number σ = 2


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

ag 1 CH3 d-str 2965  C  ia 2965 sln. SF20)
ag 2 CH3 s-str 2872  C  ia 2872 sln.
ag 3 CH2 s-str 2853  D  ia 2853 sln.
ag 4 CH3 d-deform 1460  C  ia 1460 sln. SF22)
ag 5 CH2 scis 1442  D  ia 1442 sln.
ag 6 CH3 s-deform 1382  C  ia CF
ag 7 CH2 wag 1361  D  ia CF
ag 8 CH3 rock 1151  C  ia 1151 sln.
ag 9 CC str 1059  C  ia 1059 sln.
ag 10 CC str 837  C  ia 837 sln.
ag 11 CCC deform 425  C  ia 425 sln.
au 12 CH3 d-str 2968  C 2968 S solid solid  ia SF27)
au 13 CH2 a-str 2930  C 2930 S solid solid  ia
au 14 CH3 d-deform 1461  C 1461 S solid solid  ia SF30, )OV3031)
au 15 CH2 twist 1257  C 1257 W sln.  ia
au 16 CH3 rock 948  B 948 M solid solid  ia
au 17 CH2 rock 731  B 731 S solid solid  ia
au 18 CH3-CH2 torsion 194  E  ia CF
au 19 CH2-CH2 torsion 102  E  ia CF
bg 20 CH3 d-str 2965  C  ia 2965 sln. SF1)
bg 21 CH2 a-str 2912  C  ia 2912 sln.
bg 22 CH3 d-deform 1460  C  ia 1460 sln. SF4)
bg 23 CH2 twist 1300  C  ia 1300 sln.
bg 24 CH3 rock 1180  D  ia CF
bg 25 CH2 rock 803  D  ia CF
bg 26 CH3-CH2 torsion 225  E  ia CF
bu 27 CH3 d-str 2968  C 2968 S solid solid  ia SF12)
bu 28 CH3 s-str 2870  C 2870 S solid solid  ia
bu 29 CH2 s-str 2853  E  ia SF3)
bu 30 CH3 d-deform 1461  C 1461 S solid solid  ia SF14, )OV1431)
bu 31 CH2 scis 1461  C 1461 S solid solid  ia OV1430)
bu 32 CH3 s-deform 1379  B 1379 M solid solid  ia
bu 33 CH2 wag 1290  B 1290 W solid solid  ia
bu 34 CC str 1009  C 1009 W sln.  ia
bu 35 CH3 rock 964  B 964 M solid solid  ia
bu 36 CCC deform 271  E  ia CF

Source: Shimanouchi, 1972

Gauche form     Symmetry:   C2     Symmetry Number σ = 2


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a 1 CH3 d-str 2968  C Deduced from the corresponding frequencies of the trans form
a 2 CH3 d-str 2968  C Deduced from the corresponding frequencies of the trans form
a 3 CH2 a-str 2920  D Deduced from the corresponding frequencies of the trans form
a 4 CH3 s-str 2870  C Deduced from the corresponding frequencies of the trans form
a 5 CH2 s-str 2860  D Deduced from the corresponding frequencies of the trans form
a 6 CH3 d-deform 1460  C Deduced from the corresponding frequencies of the trans form
a 7 CH3 d-deform 1460  C Deduced from the corresponding frequencies of the trans form
a 8 CH2 scis 1450  D Deduced from the corresponding frequencies of the trans form
a 9 CH3 s-deform 1380  C Deduced from the corresponding frequencies of the trans form
a 10 CH2 wag 1350  C 1350 W liq.
a 11 CH2 twist 1281  C 1281 liq.
a 12 CH3 rock 1168  D 1168 liq.
a 13 CC str 1077  D 1077 liq.
a 14 CH3 rock 980  D 980 liq. OV32)
a 15 CC str 827  D 827 liq.
a 16 CH2 rock 788  C 788 M liq. 789 liq.
a 17 CCC deform 320  C 320 liq.
a 18 CH3-CH2 torsion 201  E CF
a 19 CH2-CH2 torsion 101  E CF
b 20 CH3 d-str 2968  C Deduced from the corresponding frequencies of the trans form
b 21 CH3 d-str 2968  C Deduced from the corresponding frequencies of the trans form
b 22 CH2 a-str 2920  D Deduced from the corresponding frequencies of the trans form
b 23 CH3 s-str 2870  C Deduced from the corresponding frequencies of the trans form
b 24 CH2 s-str 2860  D Deduced from the corresponding frequencies of the trans form
b 25 CH3 d-deform 1460  C Deduced from the corresponding frequencies of the trans form
b 26 CH3 d-deform 1460  C Deduced from the corresponding frequencies of the trans form
b 27 CH2 scis 1450  D Deduced from the corresponding frequencies of the trans form
b 28 CH3 s-deform 1380  C Deduced from the corresponding frequencies of the trans form
b 29 CH2 wag 1370  D 1370 VW liq.
b 30 CH2 twist 1233  C 1233 W liq.
b 31 CC str 1133  D 1133 M liq.
b 32 CH3 rock 980  D 980 liq. OV1430)
b 33 CH3 rock 955  C 955 liq.
b 34 CH2 rock 747  C 747 S liq.
b 35 CCC deform 469  D CF
b 36 CH3-CH2 torsion 197  E CF

Source: Shimanouchi, 1972

Notes

SStrong
MMedium
WWeak
VWVery weak
iaInactive
CFCalculated frequency
SFCalculation shows that the frequency approximately equals that of the vibration indicated in the parentheses.
OVOverlapped by band indicated in parentheses.
B1~3 cm-1 uncertainty
C3~6 cm-1 uncertainty
D6~15 cm-1 uncertainty
E15~30 cm-1 uncertainty

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Pittam and Pilcher, 1972
Pittam, D.A.; Pilcher, G., Measurements of heats of combustion by flame calorimetry. Part 8.-Methane, ethane, propane, n-butane and 2-methylpropane, J. Chem. Soc. Faraday Trans. 1, 1972, 68, 2224-2229. [all data]

Prosen, Maron, et al., 1951
Prosen, E.J.; Maron, F.W.; Rossini, F.D., Heats of combustion, formation, and insomerization of ten C4 hydrocarbons, J. Res. NBS, 1951, 46, 106-112. [all data]

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of formation and combustion of 1,3-butadiene and styrene, J. Res. NBS, 1945, 34, 59-63. [all data]

Rossini, 1934
Rossini, F.D., Calorimetric determination of the heats of combustion of ethane, propane, normal butane, and normal pentane, J. Res. NBS, 1934, 12, 735-750. [all data]

Chen S.S., 1975
Chen S.S., Ideal gas thermodynamic properties and isomerization of n-butane and isobutane, J. Phys. Chem. Ref. Data, 1975, 4, 859-869. [all data]

Pitzer K.S., 1944
Pitzer K.S., Thermodynamics of gaseous paraffins. Specific heat and related properties, Ind. Eng. Chem., 1944, 36, 829-831. [all data]

Pitzer K.S., 1946
Pitzer K.S., The entropies and related properties of branched paraffin hydrocarbons, Chem. Rev., 1946, 39, 435-447. [all data]

Dailey B.P., 1943
Dailey B.P., Heat capacities and hindered rotation in n-butane and isobutane, J. Am. Chem. Soc., 1943, 65, 44-46. [all data]

Sage B.H., 1937
Sage B.H., Phase equilibria in hydrocarbon systems. XX. Isobaric heat capacity of gaseous propane, n-butane, isobutane, and n-pentane, Ind. Eng. Chem., 1937, 29, 1309-1314. [all data]

Aston and Messerly, 1940
Aston, J.G.; Messerly, G.H., The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of n-butane, J. Am. Chem. Soc., 1940, 62, 1917-1923. [all data]

Parks, Shomate, et al., 1937
Parks, G.S.; Shomate, C.H.; Kennedy, W.D.; Crawford, B.L., Jr., The entropies of n-butane and isobutane, with some heat capacity data for isobutane, J. Chem. Phys., 1937, 5, 359-363. [all data]

Huffman, Parks, et al., 1931
Huffman, H.M.; Parks, G.S.; Barmore, M., Thermal data on organic compounds. X. Further studies on the heat capacities, entropies and free energies of hydrocarbons, J. Am. Chem. Soc., 1931, 53, 3876-3888. [all data]

Younglove and Ely, 1987
Younglove, B.A.; Ely, J.F., Thermophysical Properties of Fluids II. Methane, Ethane, Propane, Isobutane, and Normal Butane, J. Phys. Chem. Ref. Data, 1987, 16, 577. [all data]

Haynes and Goodwin, 1982
Haynes, W.M.; Goodwin, R.D., Thermopnhysical properties of normal butane from 135 to 700K at pressures to 70 MPa, NBS Monogr. (U. S.), 1982, 1982, 197 pp.. [all data]

Ambrose and Tsonopoulos, 1995
Ambrose, D.; Tsonopoulos, C., Vapor-Liquid Critical Properties of Elements and Compounds. 2. Normal Alkenes, J. Chem. Eng. Data, 1995, 40, 531-546. [all data]

Li and Kiran, 1988
Li, L.; Kiran, E., Gas-Liquid Critical Properties of Methylamine + Nitrous Oxide and Methylamine + Ethylene Binary Mixtures, J. Chem. Eng. Data, 1988, 33, 342. [all data]

Beattie, Simard, et al., 1939
Beattie, J.A.; Simard, G.L.; Su, G.-J., The Vapor Pressure of Critical Constants of Normal Butane, J. Am. Chem. Soc., 1939, 61, 24. [all data]

Reid, 1972
Reid, Robert C., Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00, AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637 . [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Sako, Horiguchi, et al., 1997
Sako, Takeshi; Horiguchi, Sadashige; Ichimaru, Hiroshi; Nakagawa, Shinsuke, Vapor Pressure of Chlorine Trifluoride from 300 K to 317 K, J. Chem. Eng. Data, 1997, 42, 1, 169-171, https://doi.org/10.1021/je960286g . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Carruth and Kobayashi, 1973
Carruth, Grant F.; Kobayashi, Riki, Vapor pressure of normal paraffins ethane through n-decane from their triple points to about 10 mm mercury, J. Chem. Eng. Data, 1973, 18, 2, 115-126, https://doi.org/10.1021/je60057a009 . [all data]

Wackher, Linn, et al., 1945
Wackher, Richard C.; Linn, Carl B.; Grosse, Aristid V., Physical Properties of Butanes and Butenes., Ind. Eng. Chem., 1945, 37, 5, 464-468, https://doi.org/10.1021/ie50425a023 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Aston and Messerly, 1940, 2
Aston, J.G.; Messerly, G.H., The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of n-butane, J. Am. Chem. Soc., 1940, 62, 1917-19. [all data]

Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P., Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]

Das, Reed, et al., 1973
Das, T.R.; Reed, C.O., Jr.; Eubank, P.T., PVT Surface and Thermodynamic Properties of n-Butane, J. Chem. Eng. Data, 1973, 18, 3, 244-253, https://doi.org/10.1021/je60058a002 . [all data]

Geiseler, Quitzsch, et al., 1966
Geiseler, V.G.; Quitzsch, K.; Rauh, H.J.; Schaffernicht, H.; Walther, H.J., Bildungsenthalpien und Mesomerieenergien von π-Bindungssystemen 1. Mitteilung: Bildungsenthalpien und Mesomerieenergien einiger mehrkerniger Aromaten und verschiedener Pseudoazulene, Ber. Bunsen-Ges. Phys. Chem., 1966, 70, 551-556. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

Seetula, Russell, et al., 1990
Seetula, J.A.; Russell, J.J.; Gutman, D., Kinetics and Thermochemistry of the Reactions of Alkyl Radicals with HI: A Reconciliation of the Alkyl Radical Heats of Formation, J. Am. Chem. Soc., 1990, 112, 4, 1347, https://doi.org/10.1021/ja00160a009 . [all data]

Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M., Stabilization of Cycloalkyl Carbanions in the Gas Phase, Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608 . [all data]

Holm, 1974
Holm, T., J. Organometal. Chem., 1974, 77, 27. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Liebman, Martinho Simões, et al., 1995
Liebman, J.F.; Martinho Simões, J.A.; Slayden, S.W., In Lithium Chemistry: A Theoretical and Experimental Overview Wiley: New York, Sapse, A.-M.; Schleyer, P. von Ragué, ed(s)., 1995. [all data]

Conn, Kistiakowsky, et al., 1939
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A., Heats of organic reactions. VIII. Some further hydrogenations, including those of some acetylenes, J. Am. Chem. Soc., 1939, 61, 1868-1876. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Kistiakowsky, Ruhoff, et al., 1935
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. II. Hydrogenation of some simpler olefinic hydrocarbons, J. Am. Chem. Soc., 1935, 57, 876-882. [all data]

Kistiakowsky, Ruhoff, et al., 1936
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. IV. Hydrogenation of some dienes and of benzene, J. Am. Chem. Soc., 1936, 58, 146-153. [all data]

Fowell and Mortimer, 1961
Fowell, P.A.; Mortimer, C.T., J. Chem. Soc., 1961, 3793.. [all data]

Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds in Academic Press, New York, 1970. [all data]

Genchel, Evstigneeva, et al., 1976
Genchel, V.G.; Evstigneeva, E.V.; Petrova, N.V., Zh. Fiz. Khim., 1976, 50, 1909. [all data]

Holm, 1981
Holm, T., J. Chem. Soc., Perkin Trans. II, 1981, 464.. [all data]

Brown, Ishikawa, et al., 1990
Brown, C.E.; Ishikawa, Y.; Hackett, P.A.; Rayner, D.M., J. Am. Chem. Soc., 1990, 112, 2530. [all data]

Pines, Kvetinskas, et al., 1945
Pines, H.; Kvetinskas, B.; Kassel, L.S.; Ipatieff, V.N., Determination of equilibrium constants for butanes and pentanes, J. Am. Chem. Soc., 1945, 67, 631-637. [all data]

Roth, Adamczak, et al., 1991
Roth, W.R.; Adamczak, O.; Breuckmann, R.; Lennartz, H.-W.; Boese, R., Die Berechnung von Resonanzenergien; das MM2ERW-Kraftfeld, Chem. Ber., 1991, 124, 2499-2521. [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Vibrational and/or electronic energy levels, References