Acetylene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas226.73kJ/molReviewChase, 1998Data last reviewed in March, 1961
Δfgas227.4 ± 0.8kJ/molReviewManion, 2002adopted recommendation of Gurvich, Veyts, et al., 1991; DRB
Δfgas226.7 ± 0.79kJ/molCcbWagman, Kilpatrick, et al., 1945Unpublished work of E. J. Prosen; ALS
Quantity Value Units Method Reference Comment
gas,1 bar200.93J/mol*KReviewChase, 1998Data last reviewed in March, 1961

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
29.35100.Gurvich, Veyts, et al., 1989p=1 bar.; GT
35.57200.
44.04298.15
44.17300.
50.39400.
54.75500.
58.12600.
60.97700.
63.51800.
65.83900.
67.961000.
69.911100.
71.691200.
73.301300.
74.761400.
76.081500.
77.271600.
78.351700.
79.321800.
80.211900.
81.012000.
81.742100.
82.412200.
83.032300.
83.602400.
84.122500.
84.612600.
85.062700.
85.492800.
85.892900.
86.263000.

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1100.1100. to 6000.
A 40.6869767.47244
B 40.7327911.75110
C -16.17840-2.021470
D 3.6697410.136195
E -0.658411-9.806418
F 210.7067185.4550
G 235.0052253.5337
H 226.7314226.7314
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in March, 1961 Data last reviewed in March, 1961

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil189.KN/ABuckingham and Donaghy, 1982BS
Tboil189.6KN/AMaass and Wright, 1921Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Tfus171.65KN/AMorehouse and Maass, 1931Uncertainty assigned by TRC = 0.5 K; TRC
Tfus191.4KN/AMaass and Russell, 1918Uncertainty assigned by TRC = 1. K; TRC
Tfus191.65KN/AMcIntosh, 1907Uncertainty assigned by TRC = 0.5 K; TRC
Quantity Value Units Method Reference Comment
Ttriple192.4KN/AClark and Din, 1950Uncertainty assigned by TRC = 0.5 K; TRC
Ttriple191.35KN/AMaass and Wright, 1921Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Ptriple1.2825barN/AClark and Din, 1950Uncertainty assigned by TRC = 0.0039 bar; TRC
Quantity Value Units Method Reference Comment
Tc308.3 ± 0.1KN/ATsonopoulos and Ambrose, 1996 
Tc308.35KN/AGoloborod'ko and Khodeeva, 1972Visual, as Goloborod'ko and Khodeeva Zh.Fiz.Khim. 1969,43,1340; TRC
Tc308.66KN/AKhodeeva, 1966TRC
Tc309.7KN/AMaass and Wright, 1921Uncertainty assigned by TRC = 0.6 K; TRC
Quantity Value Units Method Reference Comment
Pc61.38 ± 0.10barN/ATsonopoulos and Ambrose, 1996 
Quantity Value Units Method Reference Comment
Vc0.1122l/molN/ATsonopoulos and Ambrose, 1996 
Vc0.113l/molN/AKhodeeva, 1966Visual, samples thoroughly purified; TRC
Quantity Value Units Method Reference Comment
ρc8.91 ± 0.010mol/lN/ATsonopoulos and Ambrose, 1996 

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
16.3273.AStephenson and Malanowski, 1987Based on data from 258. to 308. K.; AC
16.7207.AStephenson and Malanowski, 1987Based on data from 192. to 308. K.; AC
16.7210.AStephenson and Malanowski, 1987Based on data from 192. to 225. K.; AC
17.0214.N/AReid, 1972AC
16.4230.N/AAmbrose and Townsend, 1964Based on data from 215. to 308. K.; AC
16.8200.N/AAmbrose, 1956Based on data from 193. to 207. K. See also Boublik, Fried, et al., 1984.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
214.64 to 308.334.66141909.0797.947Ambrose and Townsend, 1964, 2Coefficents calculated by NIST from author's data.
192.59 to 206.304.19598699.53-21.47Ambrose, 1956, 2Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
23.5130.AStephenson and Malanowski, 1987Based on data from 98. to 145. K.; AC
21.8162.N/AJones, 1960Based on data from 133. to 191. K.; AC
25.2193.N/AAmbrose, 1956Based on data from 151. to 193. K.; AC
22.7160.AStull, 1947Based on data from 130. to 189. K.; AC
22.1129.ABurbo, 1943Based on data from 89. to 169. K.; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
3.76192.4Miskiewicz, Rieser, et al., 2010AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
17.8142.7Miskiewicz, Rieser, et al., 1976CAL
19.5192.4

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
MS - José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C2H- + Hydrogen cation = Acetylene

By formula: C2H- + H+ = C2H2

Quantity Value Units Method Reference Comment
Δr1580. ± 20.kJ/molAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Δr1550. ± 20.kJ/molAVGN/AAverage of 7 values; Individual data points

COS+ + Acetylene = (COS+ • Acetylene)

By formula: COS+ + C2H2 = (COS+ • C2H2)

Quantity Value Units Method Reference Comment
Δr116.kJ/molPD/KERDGraul S.T. and Bowers, 1991gas phase; ΔrH>=; M
Δr140.kJ/molPDissOrlando, Friedman, et al., 1990gas phase; M
Δr140.kJ/molPDissOrlando, Friedman, et al., 1990gas phase; M
Δr141. ± 22.kJ/molPDissOrlando, Friedman, et al., 1990gas phase; ΔrH<; M

Cobalt ion (1+) + Acetylene = (Cobalt ion (1+) • Acetylene)

By formula: Co+ + C2H2 = (Co+ • C2H2)

Quantity Value Units Method Reference Comment
Δr180. ± 7.9kJ/molIRMPDSurya, Ranatunga, et al., 1997RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
27. (+13.,-0.) CIDArmentrout and Kickel, 1994gas phase; ΔrH >=, guided ion beam CID; M

Nickel ion (1+) + Acetylene = (Nickel ion (1+) • Acetylene)

By formula: Ni+ + C2H2 = (Ni+ • C2H2)

Quantity Value Units Method Reference Comment
Δr188. ± 7.9kJ/molIRMPDSurya, Ranatunga, et al., 1997RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
7. (+18.,-0.) CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

2Hydrogen + Acetylene = Ethane

By formula: 2H2 + C2H2 = C2H6

Quantity Value Units Method Reference Comment
Δr-312.0 ± 0.63kJ/molChydConn, Kistiakowsky, et al., 1939gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -314.1 ± 2.8 kJ/mol; At 355 K; ALS

2,5-Norbornadiene = 1,3-Cyclopentadiene + Acetylene

By formula: C7H8 = C5H6 + C2H2

Quantity Value Units Method Reference Comment
Δr117.2 ± 2.1kJ/molKinWalsh and Wells, 1975gas phase; Reanalyzed by Pedley, Naylor, et al., 1986, Original value = 118.7 ± 1.3 kJ/mol; ALS

C2Na2 (cr) + 2Water (l) = 2(Sodium hydroxide • 1418Water) (solution) + Acetylene (g)

By formula: C2Na2 (cr) + 2H2O (l) = 2(HNaO • 1418H2O) (solution) + C2H2 (g)

Quantity Value Units Method Reference Comment
Δr-161.8 ± 1.5kJ/molRSCJohnson, van Deventer, et al., 1973Please also see Pedley and Rylance, 1977.; MS

C2HCs (cr) + Water (l) = (Cesium hydroxide • 1031Water) (solution) + Acetylene (g)

By formula: C2HCs (cr) + H2O (l) = (HCsO • 1031H2O) (solution) + C2H2 (g)

Quantity Value Units Method Reference Comment
Δr-54.0 ± 0.8kJ/molRSCAder and Hubbard, 1973Please also see Pedley and Rylance, 1977.; MS

C2HNa (cr) + Water (l) = (Sodium hydroxide • 1418Water) (solution) + Acetylene (g)

By formula: C2HNa (cr) + H2O (l) = (HNaO • 1418H2O) (solution) + C2H2 (g)

Quantity Value Units Method Reference Comment
Δr-54.2 ± 0.8kJ/molRSCJohnson, van Deventer, et al., 1973Please also see Pedley and Rylance, 1977.; MS

Copper ion (1+) + Acetylene = (Copper ion (1+) • Acetylene)

By formula: Cu+ + C2H2 = (Cu+ • C2H2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
10. (+10.,-0.) CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

2Acetylene = 1-Buten-3-yne

By formula: 2C2H2 = C4H4

Quantity Value Units Method Reference Comment
Δr233.kJ/molCmReppe, Schlichting, et al., 1948liquid phase; ALS
Δr208.kJ/molCmReppe, Schlichting, et al., 1948gas phase; ALS

Rh+ + Acetylene = (Rh+ • Acetylene)

By formula: Rh+ + C2H2 = (Rh+ • C2H2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
129. CIDChen and Armetrout, 1995gas phase; ΔrH>=, guided ion beam CID; M

Chromium ion (1+) + Acetylene = (Chromium ion (1+) • Acetylene)

By formula: Cr+ + C2H2 = (Cr+ • C2H2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
184. (+20.,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Titanium ion (1+) + Acetylene = (Titanium ion (1+) • Acetylene)

By formula: Ti+ + C2H2 = (Ti+ • C2H2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
253. (+20.,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Lanthanum ion (1+) + Acetylene = (Lanthanum ion (1+) • Acetylene)

By formula: La+ + C2H2 = (La+ • C2H2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
262. (+30.,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Scandium ion (1+) + Acetylene = (Scandium ion (1+) • Acetylene)

By formula: Sc+ + C2H2 = (Sc+ • C2H2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
240. (+20.,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Vanadium ion (1+) + Acetylene = (Vanadium ion (1+) • Acetylene)

By formula: V+ + C2H2 = (V+ • C2H2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
205. (+20.,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Yttrium ion (1+) + Acetylene = (Yttrium ion (1+) • Acetylene)

By formula: Y+ + C2H2 = (Y+ • C2H2)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
253. (+30.,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Bromine anion + Acetylene = C2H2Br-

By formula: Br- + C2H2 = C2H2Br-

Quantity Value Units Method Reference Comment
Δr36.0kJ/molLPESWild, Milley, et al., 2000gas phase; Given: 8.635±0.009 kcal/mol(0 K); B

C2Ag2 (cr) + 2(Hydrogen chloride • 12.3Water) (solution) = Acetylene (aq) + 2Silver chloride (cr)

By formula: C2Ag2 (cr) + 2(HCl • 12.3H2O) (solution) = C2H2 (aq) + 2AgCl (cr)

Quantity Value Units Method Reference Comment
Δr-77.8 ± 0.6kJ/molRSCFinch, Gardner, et al., 1991MS

(CAS Reg. No. 25012-81-1 • 4294967295Acetylene) + Acetylene = CAS Reg. No. 25012-81-1

By formula: (CAS Reg. No. 25012-81-1 • 4294967295C2H2) + C2H2 = CAS Reg. No. 25012-81-1

Quantity Value Units Method Reference Comment
Δr138.2 ± 3.0kJ/molN/AErvin, Gronert, et al., 1990gas phase; B

Aluminum ion (1+) + Acetylene = (Aluminum ion (1+) • Acetylene)

By formula: Al+ + C2H2 = (Al+ • C2H2)

Quantity Value Units Method Reference Comment
Δr54.4 ± 8.4kJ/molCIDC,EqGStockigt, Schwarz, et al., 1996Anchored to theory; RCD

Ethylene, 1,2-dichloro-, (Z)- = Acetylene + Chlorine

By formula: C2H2Cl2 = C2H2 + Cl2

Quantity Value Units Method Reference Comment
Δr21.kJ/molKinLaursen and Pimentel, 1989gas phase; Photolyses; ALS

Ethene, chloro- = Acetylene + Hydrogen chloride

By formula: C2H3Cl = C2H2 + HCl

Quantity Value Units Method Reference Comment
Δr100.7 ± 1.2kJ/molCmLacher, Gottlieb, et al., 1962gas phase; ALS

1,3-Cyclopentadiene + Acetylene = 2,5-Norbornadiene

By formula: C5H6 + C2H2 = C7H8

Quantity Value Units Method Reference Comment
Δr-117. ± 2.kJ/molEqkWalsh and Wells, 1975gas phase; ALS

C2H2+ + Acetylene = (C2H2+ • Acetylene)

By formula: C2H2+ + C2H2 = (C2H2+ • C2H2)

Quantity Value Units Method Reference Comment
Δr94.6kJ/molPIOno and Ng, 1982gas phase; M

Iron ion (1+) + Acetylene = (Iron ion (1+) • Acetylene)

By formula: Fe+ + C2H2 = (Fe+ • C2H2)

Quantity Value Units Method Reference Comment
Δr151. ± 7.9kJ/molIRMPDSurya, Ranatunga, et al., 1997RCD

(Z)-1,2-Diiodoethylene = Acetylene + Iodine

By formula: C2H2I2 = C2H2 + I2

Quantity Value Units Method Reference Comment
Δr83.3kJ/molEqkFuruyama, Golden, et al., 1968gas phase; ALS

C2H2I2 = Acetylene + Iodine

By formula: C2H2I2 = C2H2 + I2

Quantity Value Units Method Reference Comment
Δr83.3kJ/molEqkFuruyama, Golden, et al., 1968gas phase; ALS

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.039 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
0.0411800.LN/A 
0.042 VN/A 

Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   D∞h     Symmetry Number σ = 2


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

σg+ 1 CH str 3374  C  ia 3373.7 S gas
σg+ 2 CC str 1974  C  ia 1973.8 VS gas
σu+ 3 CH str 3289  B 3294.9 S gas  ia FR245)
σu+ 3 CH str 3289  B 3281.9 VS gas  ia FR245)
πg 4 CH bend 612  C  ia 611.8 VW gas
πu 5 CH bend 730  A 730.3 VS gas  ia

Source: Shimanouchi, 1972

Notes

VSVery strong
SStrong
VWVery weak
iaInactive
FRFermi resonance with an overtone or a combination tone indicated in the parentheses.
A0~1 cm-1 uncertainty
B1~3 cm-1 uncertainty
C3~6 cm-1 uncertainty

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedSqualane27.155.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane49.157.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane67.156.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane86.156.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-1195.Hoekman, 199360. m/0.32 mm/1.0 μm, He; Program: -40 C for 12 min; -40 - 125 C at 3 deg.min; 125-185 C at 6 deg/min; 185 - 220 C at 20 deg/min; hold 220 C for 2 min

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH182.Supelco, 2012100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min
CapillaryOV-101176.Zenkevich, 200525. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryMethyl Silicone156.Chen and Feng, 2007Program: not specified
CapillaryPorapack Q182.Zenkevich and Rodin, 2004Program: not specified
CapillaryMethyl Silicone155.N/AProgram: not specified
CapillarySPB-1165.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillarySPB-1165.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Vibrational and/or electronic energy levels, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Manion, 2002
Manion, J.A., Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons, J. Phys. Chem. Ref. Data, 2002, 31, 1, 123-172, https://doi.org/10.1063/1.1420703 . [all data]

Gurvich, Veyts, et al., 1991
Thermodynamic Properties of Individual Substances, 4th edition, Volume 2, Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.;, ed(s)., Hemisphere, New York, 1991. [all data]

Wagman, Kilpatrick, et al., 1945
Wagman, D.D.; Kilpatrick, J.E.; Pitzer, K.S.; Rossini, F.D., Heats, equilibrium constants, and free energies of formation of the acetylene hydrocarbons through the pentynes, to 1,500° K, J. Res. NBS, 1945, 35, 467-496. [all data]

Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]

Buckingham and Donaghy, 1982
Buckingham, J.; Donaghy, S.M., Dictionary of Organic Compounds: Fifth Edition, Chapman and Hall, New York, 1982, 1. [all data]

Maass and Wright, 1921
Maass, O.; Wright, C.H., SOME PHYSICAL PROPERTIES OF HYDROCARBONS CONTAINING TWO AND THREE CARBON ATOMS., J. Am. Chem. Soc., 1921, 43, 5, 1098-1111, https://doi.org/10.1021/ja01438a013 . [all data]

Morehouse and Maass, 1931
Morehouse, F.R.; Maass, O., The Preparationa and Physical Properties of Ethyl and Methyl Acetylene, Can. J. Res., 1931, 5, 306. [all data]

Maass and Russell, 1918
Maass, O.; Russell, J., Unsaturation and molecular compound formation, J. Am. Chem. Soc., 1918, 40, 1561-1573. [all data]

McIntosh, 1907
McIntosh, D., The physical properties of liquid and solid acetylene., J. Phys. Chem., 1907, 11, 306-17. [all data]

Clark and Din, 1950
Clark, A.M.; Din, F., Equilibria Between Solid, Liquid, and Gaseous Phases at Low Temperature binary systems acetylene - carbon dioxide, acetylene - ethylene and acetylene - ethane, Trans. Faraday Soc., 1950, 46, 901. [all data]

Tsonopoulos and Ambrose, 1996
Tsonopoulos, C.; Ambrose, D., Vapor-Liquid Critical Properties of Elements and Compounds. 6. Unsaturated Aliphatic Hydrocarbons, J. Chem. Eng. Data, 1996, 41, 645-656. [all data]

Goloborod'ko and Khodeeva, 1972
Goloborod'ko, N.P.; Khodeeva, S.M., Russ. J. Phys. Chem. (Engl. Transl.), 1972, 46, 235-7. [all data]

Khodeeva, 1966
Khodeeva, S.M., Visual Observation of Gas-Gas Mixture, Russ. J. Phys. Chem. (Engl. Transl.), 1966, 40, 1061-3. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Reid, 1972
Reid, Robert C., Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00, AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637 . [all data]

Ambrose and Townsend, 1964
Ambrose, D.; Townsend, R., Vapour pressure of acetylene, Trans. Faraday Soc., 1964, 60, 1025, https://doi.org/10.1039/tf9646001025 . [all data]

Ambrose, 1956
Ambrose, D., The vapour pressures and critical temperatures of acetylene and carbon dioxide, Trans. Faraday Soc., 1956, 52, 772, https://doi.org/10.1039/tf9565200772 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Ambrose and Townsend, 1964, 2
Ambrose, D.; Townsend, R., Vapour Pressure of Acetylene, Trans. Faraday Soc., 1964, 60, 1025-1029, https://doi.org/10.1039/tf9646001025 . [all data]

Ambrose, 1956, 2
Ambrose, D., The Vapour Pressures and Critical Temperatures of Acetylene and Carbon Dioxide, Trans. Faraday Soc., 1956, 52, 772-781, https://doi.org/10.1039/tf9565200772 . [all data]

Jones, 1960
Jones, A.H., Sublimation Pressure Data for Organic Compounds., J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Burbo, 1943
Burbo, P.Z., Russ. J. Phys. Chem., 1943, 7, 286. [all data]

Miskiewicz, Rieser, et al., 2010
Miskiewicz, Stefan; Rieser, Klaus; Dorfmüller, Thomas, Thermodynamische Untersuchungen an kondensierten Phasen, Berichte der Bunsengesellschaft für physikalische Chemie, 2010, 80, 5, 395-405, https://doi.org/10.1002/bbpc.19760800504 . [all data]

Miskiewicz, Rieser, et al., 1976
Miskiewicz, S.; Rieser, K.; Dorfmuller, T., Thermodynamische Untersuchungen an kondensierten Phasen, Ber. Bunsen-Ges. Physik. Chem., 1976, 80, 5, 395, https://doi.org/10.1002/bbpc.19760800504 . [all data]

Graul S.T. and Bowers, 1991
Graul S.T.; Bowers, M.T., Dynamics of Metastable Dissociation and Photodissociation of the Gas Phase Cluster Ion (OCS.C2H2)+, J. Phys. Chem., 1991, 95, 21, 8328, https://doi.org/10.1021/j100174a055 . [all data]

Orlando, Friedman, et al., 1990
Orlando, T.M.; Friedman, A.; Maier, J.P., Photodissociation Spectroscopy of the [OCS C2H2]+ Cluster, J. Chem. Phys., 1990, 92, 12, 7365, https://doi.org/10.1063/1.458222 . [all data]

Surya, Ranatunga, et al., 1997
Surya, P.I.; Ranatunga, D.R.A.; Freiser, B.S., Infrared Multiphoton Dissociation of MC4H6+ [M=Fe, Co or Ni: C4H6=1,3-butadiene or (C2H2)(C2H4), J. Am. Chem. Soc., 1997, 119, 14, 3351, https://doi.org/10.1021/ja963200c . [all data]

Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L., Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]

Conn, Kistiakowsky, et al., 1939
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A., Heats of organic reactions. VIII. Some further hydrogenations, including those of some acetylenes, J. Am. Chem. Soc., 1939, 61, 1868-1876. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Walsh and Wells, 1975
Walsh, R.; Wells, J.M., The enthalpy of formation of bicyclo[2,2,1]hepta-2,5-diene. Thermodynamic functions of bicyclo[2,2,1]heptane and bicyclo[2,2,1]hepta-2,5-diene, J. Chem. Thermodyn., 1975, 7, 149-154. [all data]

Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P., Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]

Johnson, van Deventer, et al., 1973
Johnson, G.K.; van Deventer, E.H.; Ackerman, J.P.; Hubbard, W.N.; Osborne, D.W.; Flotow, H.L., J. Chem. Thermodyn., 1973, 5, 57. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Ader and Hubbard, 1973
Ader, M.; Hubbard, W.N., J. Chem. Thermodyn., 1973, 5, 607. [all data]

Reppe, Schlichting, et al., 1948
Reppe, W.; Schlichting, O.; Klager, K.; Toepel, T., Cyclisierende Polymerisation von Acetylen I Uber Cyclooctatetraen, Justus Liebigs Ann. Chem., 1948, 1-93. [all data]

Chen and Armetrout, 1995
Chen, Y.M.; Armetrout, P.B., Activation of C2H6, C3H8, and c-C3H6 by Gas-Phase Rh+ and the Thermochemistry of Rh-Ligand Complexes, J. Am. Chem. Soc., 1995, 117, 36, 9291, https://doi.org/10.1021/ja00141a022 . [all data]

Wild, Milley, et al., 2000
Wild, D.A.; Milley, P.J.; Loh, Z.M.; Wolynec, P.P.; Weiser, P.S.; Bieske, E.J., Structural and Energetic Properties of the Br--C2H2 Anion Complex from Rotationally Resolved Mid-infrared Spectra And ab initio Calculations, J. Chem. Phys., 2000, 113, 3, 1075, https://doi.org/10.1063/1.481919 . [all data]

Finch, Gardner, et al., 1991
Finch, A.; Gardner, P.J.; Head, A.J.; Majdi, H.S., Thermochim. Acta, 1991, 180, 325. [all data]

Ervin, Gronert, et al., 1990
Ervin, K.M.; Gronert, S.; Barlow, S.E.; Gilles, M.K.; Harrison, A.G.; Bierbaum, V.M.; DePuy, C.H.; Lin, W.C., Bonds Strengths of Ethylene and Acetylene, J. Am. Chem. Soc., 1990, 112, 15, 5750, https://doi.org/10.1021/ja00171a013 . [all data]

Stockigt, Schwarz, et al., 1996
Stockigt, D.; Schwarz, J.; Schwarz, H., Theoretical and Experimental Studies on the Bond Dissociation Energies of Al(methane)+, Al(acetylene)+, Al(ethene)+, and Al(ethane)+, J. Phys. Chem., 1996, 100, 21, 8786, https://doi.org/10.1021/jp960060k . [all data]

Laursen and Pimentel, 1989
Laursen, S.L.; Pimentel, G.C., Matrix-induced intersystem crossing in the photochemistry of the 1,2-dichloroethenes, J. Phys. Chem., 1989, 93, 2328-2333. [all data]

Lacher, Gottlieb, et al., 1962
Lacher, J.R.; Gottlieb, H.B.; Park, J.D., Reaction heats of organic compounds. Part 2.-Heat of addition of hydrogen chloride to acetylene, Trans. Faraday Soc., 1962, 58, 2348-2351. [all data]

Ono and Ng, 1982
Ono, Y.; Ng, C.Y., A Study of the Unimolecular Decomposition of the (C2H2)2+ Complex, J. Chem. Phys., 1982, 77, 6, 2947, https://doi.org/10.1063/1.444216 . [all data]

Furuyama, Golden, et al., 1968
Furuyama, S.; Golden, D.M.; Benson, S.W., The thermochemistry of the gas-phase equilibria trans-1,2-diiodoethylene = acetylene + I2 and trans-1,2-diiodoethylene = cis-1,2-diiodoethylene, J. Phys. Chem., 1968, 72, 3204-3208. [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]

Hively and Hinton, 1968
Hively, R.A.; Hinton, R.E., Variation of the retention index with temperature on squalane substrates, J. Gas Chromatogr., 1968, 6, 4, 203-217, https://doi.org/10.1093/chromsci/6.4.203 . [all data]

Hoekman, 1993
Hoekman, S.K., Improved gas chromatography procedure for speciated hydrocarbon measurements of vehicle emissions, J. Chromatogr., 1993, 639, 2, 239-253, https://doi.org/10.1016/0021-9673(93)80260-F . [all data]

Supelco, 2012
Supelco, CatalogNo. 24160-U, Petrocol DH Columns. Catalog No. 24160-U, 2012, retrieved from http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Datasheet/1/w97949.Par.0001.File.tmp/w97949.pdf. [all data]

Zenkevich, 2005
Zenkevich, I.G., Experimentally measured retention indices., 2005. [all data]

Chen and Feng, 2007
Chen, Y.; Feng, C., QSPR study on gas chromatography retention index of some organic pollutants, Comput. Appl. Chem. (China), 2007, 24, 10, 1404-1408. [all data]

Zenkevich and Rodin, 2004
Zenkevich, I.G.; Rodin, A.A., Gas chromatographic identification of some volatile toxic fluorine containing compounds by precalculated retention indices, J. Ecol. Chem. (Rus.), 2004, 13, 1, 22-28. [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Vibrational and/or electronic energy levels, Gas Chromatography, References