n-Butyl ether

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas-79.8 ± 0.5kcal/molCcbColomina, Pell, et al., 1965 
Δfgas-79.8kcal/molCcbMurrin and Goldhagen, 1957 

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-90.34 ± 0.24kcal/molCcbColomina, Pell, et al., 1965ALS
Δfliquid-90.24 ± 0.66kcal/molCcbMurrin and Goldhagen, 1957ALS
Quantity Value Units Method Reference Comment
Δcliquid-1276.92 ± 0.22kcal/molCcbColomina, Pell, et al., 1965Corresponding Δfliquid = -90.32 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-1277.03 ± 0.66kcal/molCcbMurrin and Goldhagen, 1957Corresponding Δfliquid = -90.21 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-1277.10 ± 0.80kcal/molCcbSkuratov, Strepikheev, et al., 1957Reanalyzed by Cox and Pilcher, 1970, Original value = -1277.5 ± 0.8 kcal/mol; Combustion at 293 K; Corresponding Δfliquid = -90.14 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
66.482298.15Cobos, Casanova, et al., 1987Average of two measurements.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Tboil415. ± 1.KAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus175.25KN/ATimmermans, 1952Uncertainty assigned by TRC = 0.4 K; TRC
Tfus177.78KN/ADreisbach and Martin, 1949Uncertainty assigned by TRC = 0.05 K; TRC
Quantity Value Units Method Reference Comment
Tc588.1KN/AMajer and Svoboda, 1985 
Tc584.1KN/AToczylkin. L.S. and Young, 1980Uncertainty assigned by TRC = 0.58 K; TRC
Quantity Value Units Method Reference Comment
Pc29.71atmN/AToczylkin. L.S. and Young, 1980Uncertainty assigned by TRC = 0.2968 atm; Visual; TRC
Quantity Value Units Method Reference Comment
Δvap11.kcal/molN/AMajer and Svoboda, 1985 
Δvap10.7 ± 0.02kcal/molCFuchs, Peacock, et al., 1982AC
Δvap10.75kcal/molCMajer, Wagner, et al., 1980ALS
Δvap10.8 ± 0.02kcal/molCMajer, Wagner, et al., 1980AC
Δvap10.6kcal/molN/AAmbrose, Ellender, et al., 1976Based on data from 362. to 414. K.; AC

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
8.721413.5N/AMajer and Svoboda, 1985 
9.78354.AStephenson and Malanowski, 1987Based on data from 339. to 415. K.; AC
9.97351.AStephenson and Malanowski, 1987Based on data from 336. to 415. K.; AC
8.70413.N/AAmbrose, Ellender, et al., 1976Based on data from 362. to 414. K.; AC
9.70377.EBCidlinský and Polák, 1969Based on data from 362. to 413. K.; AC
9.42413.N/ANisel'son and Lapivus, 1965Based on data from 386. to 440. K.; AC
11.2293.VSkuratov, Strepikheev, et al., 1957Combustion at 293 K; ALS
10.50 ± 0.10414.3VMathews and Fehlandt, 1931Reanalyzed by Pedley, Naylor, et al., 1986, Original value = 8.83 kcal/mol; ALS

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kcal/mol) β Tc (K) Reference Comment
298. to 358.15.420.2974588.1Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference
362.29 to 413.213.924471302.768-81.481Cidlinský and Polák, 1969

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

CH6N+ + n-Butyl ether = (CH6N+ • n-Butyl ether)

By formula: CH6N+ + C8H18O = (CH6N+ • C8H18O)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr25.0kcal/molPHPMSMeot-Ner, 1984gas phase
Δr25.0kcal/molPHPMSMeot-Ner (Mautner), 1983gas phase
Quantity Value Units Method Reference Comment
Δr28.0cal/mol*KPHPMSMeot-Ner, 1984gas phase
Δr28.0cal/mol*KPHPMSMeot-Ner (Mautner), 1983gas phase

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Standard Reference Data Program
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Sadtler Research Labs Under US-EPA Contract
State gas

This IR spectrum is from the NIST/EPA Gas-Phase Infrared Database .


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW- 563
NIST MS number 228442

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Colomina, Pell, et al., 1965
Colomina, M.; Pell, A.S.; Skinner, H.A.; Coleman, D.J., Heats of combustion of four dialkylethers, Trans. Faraday Soc., 1965, 61, 2641. [all data]

Murrin and Goldhagen, 1957
Murrin, J.W.; Goldhagen, S., Determination of the C-O bond energy from the heats of combustion of four aliphatic ethers, NAVORD Report No. 5491, U.S. Naval Powder Factory Res. & Dev. Dept., 1957, 1-14. [all data]

Skuratov, Strepikheev, et al., 1957
Skuratov, S.M.; Strepikheev, A.A.; Kozina, M.P., About the reaction activity of five and six-membered heterocyclic compounds, Dokl. Akad. Nauk SSSR, 1957, 117, 452-454. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Cobos, Casanova, et al., 1987
Cobos, J.C.; Casanova, C.; Roux-Desgranges, G.; Grolier, J.-P.E., Excess properties of mixtures of some n-alkoxyethanols with organic solvents. II. VEm and CEp,m with di-n-butylether at 298.15 K, J. Chem. Thermodynam., 1987, 19, 791-796. [all data]

Timmermans, 1952
Timmermans, J., Freezing points of organic compounds. VVI New determinations., Bull. Soc. Chim. Belg., 1952, 61, 393. [all data]

Dreisbach and Martin, 1949
Dreisbach, R.R.; Martin, R.A., Physical Data on Some Organic Compounds, Ind. Eng. Chem., 1949, 41, 2875-8. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Toczylkin. L.S. and Young, 1980
Toczylkin. L.S.; Young, C.L., Gas-liquid critical temperatures of mixtures containing electron donors II. Ether mixtures, J. Chem. Thermodyn., 1980, 12, 355-64. [all data]

Fuchs, Peacock, et al., 1982
Fuchs, Richard; Peacock, L. Alan; Stephenson, W. Kirk, Enthalpies of interaction of polar and nonpolar molecules with aromatic solvents, Can. J. Chem., 1982, 60, 15, 1953-1958, https://doi.org/10.1139/v82-273 . [all data]

Majer, Wagner, et al., 1980
Majer, V.; Wagner, Z.; Svoboda, V.; Cadek, V., Enthalpies of vaporization and cohesive energies for a group of aliphatic ethers, J. Chem. Thermodyn., 1980, 12, 387-391. [all data]

Ambrose, Ellender, et al., 1976
Ambrose, D.; Ellender, J.H.; Sprake, C.H.S.; Townsend, R., Thermodynamic properties of organic oxygen compounds XLIII. Vapour pressures of some ethers, The Journal of Chemical Thermodynamics, 1976, 8, 2, 165-178, https://doi.org/10.1016/0021-9614(76)90090-2 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Cidlinský and Polák, 1969
Cidlinský, J.; Polák, J., Saturated vapour pressures of some ethers, Collect. Czech. Chem. Commun., 1969, 34, 4, 1317-1321, https://doi.org/10.1135/cccc19691317 . [all data]

Nisel'son and Lapivus, 1965
Nisel'son, L.A.; Lapivus, I.I., Russ. J. Phys. Chem., 1965, 39, 80. [all data]

Mathews and Fehlandt, 1931
Mathews, J.H.; Fehlandt, P.R., The heats of vaporization of some organic compounds, J. Am. Chem. Soc., 1931, 53, 3212-32. [all data]

Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P., Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]

Meot-Ner, 1984
Meot-Ner, (Mautner)M., The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects, J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015 . [all data]

Meot-Ner (Mautner), 1983
Meot-Ner (Mautner), M., The Ionic Hydrogen Bond. 3. Multiple and -CH+...O- Bonds. Complexes of Ammonium Ions with Polyethers and Crown Ethers, J. Am. Chem. Soc., 1983, 105, 15, 4912, https://doi.org/10.1021/ja00353a012 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References