2-Propanol, 2-methyl-
- Formula: C4H10O
- Molecular weight: 74.1216
- IUPAC Standard InChIKey: DKGAVHZHDRPRBM-UHFFFAOYSA-N
- CAS Registry Number: 75-65-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: tert-Butyl alcohol; tert-Butanol; Ethanol, 1,1-Dimethyl-; Trimethylcarbinol; Trimethylmethanol; 1,1-Dimethylethanol; 2-Methyl-2-propanol; tert-C4H9OH; t-Butanol; tert-Butyl hydroxide; 2-Methylpropanol-2; 2-Methylpropan-2-ol; Alcool butylique tertiaire; Butanol tertiaire; t-Butyl hydroxide; Methanol, trimethyl-; NCI-C55367; 2-Methyl n-propan-2-ol; Methyl-2 propanol-2; Tert.-butyl alcohol
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -74.72 ± 0.21 | kcal/mol | Eqk | Wiberg and Hao, 1991 | Heat of hydration; ALS |
ΔfH°gas | -74.9 ± 0.35 | kcal/mol | Ccb | Skinner and Snelson, 1960 | ALS |
ΔfH°gas | -74.02 | kcal/mol | N/A | Taft and Riesz, 1955 | Value computed using ΔfHliquid° value of -356.0 kj/mol from Taft and Riesz, 1955 and ΔvapH° value of 46.3 kj/mol from Skinner and Snelson, 1960.; DRB |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
8.568 | 50. | Thermodynamics Research Center, 1997 | p=1 bar. Selected values of S(T) and Cp(T) are in good agreement with those of [ Beynon E.T., 1963] because of using practically the same molecular constants in two calculations. Please also see Chao J., 1986.; GT |
12.60 | 100. | ||
16.83 | 150. | ||
20.38 | 200. | ||
25.404 | 273.15 | ||
27.158 ± 0.050 | 298.15 | ||
27.290 | 300. | ||
34.175 | 400. | ||
40.246 | 500. | ||
45.327 | 600. | ||
49.591 | 700. | ||
53.229 | 800. | ||
56.370 | 900. | ||
59.097 | 1000. | ||
61.472 | 1100. | ||
63.540 | 1200. | ||
65.337 | 1300. | ||
66.902 | 1400. | ||
68.265 | 1500. | ||
70.96 | 1750. | ||
72.87 | 2000. | ||
74.26 | 2250. | ||
75.26 | 2500. | ||
76.00 | 2750. | ||
76.55 | 3000. |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
31.87 ± 0.27 | 360.55 | Stromsoe E., 1970 | Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 1.13 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Please also see Beynon E.T., 1963.; GT |
31.699 | 365.15 | ||
32.56 ± 0.27 | 372.85 | ||
32.971 | 383.15 | ||
33.27 ± 0.27 | 385.65 | ||
34.149 | 401.15 | ||
34.68 ± 0.27 | 410.85 | ||
35.390 | 419.15 | ||
36.699 | 437.15 | ||
36.30 ± 0.27 | 439.85 | ||
36.39 ± 0.27 | 441.45 | ||
38.02 ± 0.27 | 470.75 | ||
39.61 ± 0.27 | 499.25 | ||
41.25 ± 0.27 | 528.75 | ||
43.84 ± 0.27 | 575.05 | ||
44.76 ± 0.27 | 591.55 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -85.86 ± 0.20 | kcal/mol | Eqk | Wiberg and Hao, 1991 | Heat of hydration; ALS |
ΔfH°liquid | -85.87 ± 0.19 | kcal/mol | Ccb | Skinner and Snelson, 1960 | ALS |
ΔfH°liquid | -85.0 | kcal/mol | Eqk | Taft and Riesz, 1955 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -631.92 ± 0.19 | kcal/mol | Ccb | Skinner and Snelson, 1960 | Corresponding ΔfHºliquid = -85.86 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 45.29 | cal/mol*K | N/A | Parks, Kelley, et al., 1929 | Extrapolation bloew 90 K, 45.19 J/mol*K. Revision of previous data.; DH |
S°liquid | 47.20 | cal/mol*K | N/A | Parks and Anderson, 1926 | Extrapolation below 90 K, 53.35 J/mol*K.; DH |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -629.4 | kcal/mol | Ccb | Raley, Rust, et al., 1948 | Corresponding ΔfHºsolid = -88.4 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°solid,1 bar | 40.839 | cal/mol*K | N/A | Oetting F.L., 1963 | crystaline, I phase; DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
51.475 | 298.15 | Caceres-Alonso, Costas, et al., 1988 | DH |
53.031 | 299.15 | Okano, Ogawa, et al., 1988 | DH |
50.2 | 298. | De Visser, Perron, et al., 1977 | DH |
50.2 | 298.15 | De Visser, Perron, et al., 1977, 2 | T = 298.15, 313.15, 328.15 K.; DH |
53.75 | 298.15 | Murthy and Subrahmanyam, 1977 | DH |
52.25 | 298.15 | Skold, Suurkuusk, et al., 1976 | DH |
53.70 | 300. | Parks and Anderson, 1926 | T = 87 to 300 K. Value is unsmoothed experimental datum.; DH |
Constant pressure heat capacity of solid
Cp,solid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
34.921 | 298.15 | Oetting F.L., 1963 | crystaline, I phase; T = 15 to 330 K.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 355.5 ± 0.7 | K | AVG | N/A | Average of 65 out of 70 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 298.3 ± 0.7 | K | AVG | N/A | Average of 15 out of 17 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 298.96 | K | N/A | Wilhoit, Chao, et al., 1985 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.06 K; TRC |
Ttriple | 298.97 | K | N/A | Oetting, 1963 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.06 K; TRC |
Ttriple | 298.5 | K | N/A | Parks and Anderson, 1926, 2 | Uncertainty assigned by TRC = 0.2 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 506.2 ± 0.3 | K | N/A | Gude and Teja, 1995 | |
Tc | 506.2 | K | N/A | Majer and Svoboda, 1985 | |
Tc | 506.2 | K | N/A | Ambrose and Townsend, 1963 | TRC |
Tc | 508.9 | K | N/A | Krone and Johnson, 1956 | TRC |
Tc | 508.1 | K | N/A | Pawlewski, 1883 | TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 39.2 ± 0.2 | atm | N/A | Gude and Teja, 1995 | |
Pc | 39.20 | atm | N/A | Ambrose and Townsend, 1963 | TRC |
Pc | 41.77 | atm | N/A | Krone and Johnson, 1956 | TRC |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.275 | l/mol | N/A | Gude and Teja, 1995 | |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 3.64 ± 0.02 | mol/l | N/A | Gude and Teja, 1995 | |
ρc | 3.643 | mol/l | N/A | Ambrose and Townsend, 1963 | TRC |
ρc | 3.48 | mol/l | N/A | Krone and Johnson, 1956 | TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 11.1 ± 0.3 | kcal/mol | AVG | N/A | Average of 11 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 9.7 | kcal/mol | V | Raley, Rust, et al., 1948 | ALS |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
9.338 | 355.5 | N/A | Majer and Svoboda, 1985 | |
10.2 | 338. | N/A | Ortega, Espiau, et al., 2003 | Based on data from 323. to 368. K.; AC |
10.4 | 336. | N/A | Aucejo, Loras, et al., 1999 | Based on data from 321. to 359. K.; AC |
11.0 | 314. | A | Stephenson and Malanowski, 1987 | Based on data from 299. to 375. K.; AC |
9.89 | 355. | A | Stephenson and Malanowski, 1987 | Based on data from 347. to 363. K.; AC |
10.3 | 371. | A | Stephenson and Malanowski, 1987 | Based on data from 356. to 480. K.; AC |
9.89 | 355. | A | Stephenson and Malanowski, 1987 | Based on data from 347. to 363. K.; AC |
9.51 | 372. | A | Stephenson and Malanowski, 1987 | Based on data from 357. to 461. K.; AC |
8.03 | 468. | A | Stephenson and Malanowski, 1987 | Based on data from 453. to 506. K.; AC |
10.2 | 344. | EB | Stephenson and Malanowski, 1987 | Based on data from 329. to 363. K. See also Ambrose, Counsell, et al., 1970 and Beynon and McKetta, 1963.; AC |
11.02 ± 0.01 | 303.2 | C | Majer, Svoboda, et al., 1984 | ALS |
11.0 ± 0.02 | 303. | C | Majer, Svoboda, et al., 1984 | AC |
10.7 ± 0.02 | 313. | C | Majer, Svoboda, et al., 1984 | AC |
10.3 ± 0.02 | 328. | C | Majer, Svoboda, et al., 1984 | AC |
9.80 ± 0.02 | 343. | C | Majer, Svoboda, et al., 1984 | AC |
8.89 ± 0.02 | 368. | C | Majer, Svoboda, et al., 1984 | AC |
10.7 | 321. | N/A | Sachek, Peshchenko, et al., 1982 | Based on data from 306. to 357. K.; AC |
11.1 | 308. | N/A | Wilhoit and Zwolinski, 1973 | Based on data from 293. to 376. K.; AC |
10.6 | 328. | N/A | Brown, Fock, et al., 1969 | Based on data from 313. to 355. K. See also Boublik, Fried, et al., 1984.; AC |
9.25 | 388. | N/A | Ambrose and Townsend, 1963, 2 | Based on data from 373. to 506. K.; AC |
10.1 | 348. | EB | Beynon and McKetta, 1963 | Based on data from 333. to 363. K.; AC |
10.2 ± 0.02 | 330. | C | Beynon and McKetta, 1963 | AC |
9.87 ± 0.02 | 340. | C | Beynon and McKetta, 1963 | AC |
9.66 ± 0.02 | 346. | C | Beynon and McKetta, 1963 | AC |
9.56 ± 0.02 | 349. | C | Beynon and McKetta, 1963 | AC |
9.32 ± 0.02 | 356. | C | Beynon and McKetta, 1963 | AC |
10.7 | 323. | N/A | Parks and Barton, 1928 | Based on data from 293. to 363. K.; AC |
Enthalpy of vaporization
ΔvapH = A exp(-αTr)
(1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kcal/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 385. |
---|---|
A (kcal/mol) | 16.51 |
α | -0.3583 |
β | 0.678 |
Tc (K) | 506.2 |
Reference | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
312.66 to 355.56 | 4.49203 | 1174.869 | -93.92 | Brown, Fock, et al., 1969 | Coefficents calculated by NIST from author's data. |
376.42 to 506. | 4.25812 | 1075.578 | -102.588 | Ambrose and Townsend, 1963, 3 | Coefficents calculated by NIST from author's data. |
330.6 to 363. | 4.58752 | 1225.649 | -88.316 | Beynon and McKetta, 1963 | Coefficents calculated by NIST from author's data. |
333.93 to 362.71 | 4.32687 | 1095.084 | -102.409 | Biddiscombe, Collerson, et al., 1963 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
12.3 | 275. | A | Stull, 1947 | Based on data from 253. to 298. K.; AC |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
1.6 | 299. | Domalski and Hearing, 1996 | AC |
1.621 | 298.5 | Parks and Anderson, 1926 | DH |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
5.430 | 298.5 | Parks and Anderson, 1926 | DH |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
0.69 | 286.1 | Domalski and Hearing, 1996 | CAL |
0.397 | 294.5 | ||
5.359 | 299.0 |
Enthalpy of phase transition
ΔHtrs (kcal/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
0.198 | 286.14 | crystaline, II | crystaline, I | Oetting F.L., 1963 | DH |
0.117 | 294.47 | crystaline, III | crystaline, I | Oetting F.L., 1963 | Metastable transition, not always reproducible, c,III,metastable form.; DH |
1.6020 | 298.97 | crystaline, I | liquid | Oetting F.L., 1963 | DH |
Entropy of phase transition
ΔStrs (cal/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
0.691 | 286.14 | crystaline, II | crystaline, I | Oetting F.L., 1963 | DH |
0.397 | 294.47 | crystaline, III | crystaline, I | Oetting F.L., 1963 | Metastable; DH |
5.359 | 298.97 | crystaline, I | liquid | Oetting F.L., 1963 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: Cl- + C4H10O = (Cl- • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19. ± 4. | kcal/mol | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.4 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
ΔrS° | 24.0 | cal/mol*K | PHPMS | Sieck, 1985 | gas phase; M |
ΔrS° | 23.4 | cal/mol*K | N/A | Larson and McMahon, 1984 | gas phase; Entropy change calculated or estimated; French, Ikuta, et al., 1982; M |
ΔrS° | 27. | cal/mol*K | PHPMS | Kebarle, 1977 | gas phase; M |
ΔrS° | 10.3 | cal/mol*K | N/A | Yamdagni and Kebarle, 1971 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 11.58 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 12.30 ± 0.30 | kcal/mol | TDAs | Sieck, 1985 | gas phase; B |
ΔrG° | 11.60 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
ΔrG° | 11.1 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1984, 2 | gas phase; B,M |
ΔrG° | 11.1 ± 2.0 | kcal/mol | TDAs | Yamdagni and Kebarle, 1971 | gas phase; B |
C4H9O- + =
By formula: C4H9O- + H+ = C4H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 374.7 ± 1.0 | kcal/mol | D-EA | Ramond, Davico, et al., 2000 | gas phase; B |
ΔrH° | 374.6 ± 2.1 | kcal/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 376.00 ± 0.70 | kcal/mol | CIDT | DeTuri and Ervin, 1999 | gas phase; B |
ΔrH° | 374.3 ± 2.0 | kcal/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 368.1 ± 1.1 | kcal/mol | H-TS | Ramond, Davico, et al., 2000 | gas phase; B |
ΔrG° | 368.0 ± 2.0 | kcal/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 367.7 ± 2.1 | kcal/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
By formula: C4H9O- + C4H10O = (C4H9O- • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.9 ± 2.9 | kcal/mol | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.3 | cal/mol*K | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 18.8 ± 2.0 | kcal/mol | IMRE | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
By formula: F- + C4H10O = (F- • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 33.40 ± 0.70 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 33.3 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
ΔrH° | 32.7 ± 2.2 | kcal/mol | CIDT | DeTuri and Ervin, 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26.1 | cal/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 26.01 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 25.5 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
By formula: C3H9Sn+ + C4H10O = (C3H9Sn+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36.6 | kcal/mol | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 32.4 | cal/mol*K | N/A | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
19.6 | 525. | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
By formula: C5H11O- + C4H10O = (C5H11O- • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 27.4 ± 2.9 | kcal/mol | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 18.7 ± 2.0 | kcal/mol | IMRE | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B |
By formula: (Cl- • 2C4H10O) + C4H10O = (Cl- • 3C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.80 ± 0.30 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 13.7 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 31.0 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 5.07 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 4.4 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- • C4H10O) + C4H10O = (Cl- • 2C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.90 ± 0.20 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 14.9 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.8 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 7.36 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 7.2 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- • 5C4H10O) + C4H10O = (Cl- • 6C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.4 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; Estimated entropy; single temperature measurement; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 32. | cal/mol*K | N/A | Hiraoka and Mizuse, 1987 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1.8 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; Estimated entropy; single temperature measurement; B |
By formula: CH6N+ + C4H10O = (CH6N+ • C4H10O)
Bond type: Hydrogen bonds of the type NH+-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22.9 | kcal/mol | PHPMS | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26. | cal/mol*K | N/A | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
10.0 | 495. | PHPMS | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated; M |
By formula: I- + C4H10O = (I- • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.10 ± 0.30 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrH° | 12.1 ± 1.0 | kcal/mol | TDAs | Caldwell and Kebarle, 1984 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 18.7 | cal/mol*K | PHPMS | Caldwell and Kebarle, 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 6.15 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
ΔrG° | 6.5 ± 1.0 | kcal/mol | TDAs | Caldwell and Kebarle, 1984 | gas phase; B |
By formula: CN- + C4H10O = (CN- • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.1 ± 3.5 | kcal/mol | IMRE | Larson and McMahon, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.8 | cal/mol*K | N/A | Larson and McMahon, 1987 | gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10.7 ± 2.3 | kcal/mol | IMRE | Larson and McMahon, 1987 | gas phase; B,M |
By formula: (Cl- • 3C4H10O) + C4H10O = (Cl- • 4C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.7 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 31.3 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 3.3 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- • 4C4H10O) + C4H10O = (Cl- • 5C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.9 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 32.3 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 2.2 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: HS- + C4H10O = (HS- • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.80 ± 0.30 | kcal/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 19.9 | cal/mol*K | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10.9 ± 1.2 | kcal/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B |
By formula: NO2- + C4H10O = (NO2- • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.60 ± 0.20 | kcal/mol | TDAs | Sieck, 1985 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.5 | cal/mol*K | PHPMS | Sieck, 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10.80 ± 0.30 | kcal/mol | TDAs | Sieck, 1985 | gas phase; B |
By formula: C5H5- + C4H10O = (C5H5- • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.0 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 32.0 | cal/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 7.4 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B |
By formula: Na+ + C4H10O = (Na+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28.0 ± 1.0 | kcal/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 27.8 ± 1.0 | kcal/mol | CIDT | Rodgers and Armentrout, 1999 | RCD |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
21.4 | 298. | IMRE | McMahon and Ohanessian, 2000 | Anchor alanine=39.89; RCD |
+ 2 = C8H20FO2-
By formula: F- + 2C4H10O = C8H20FO2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22.00 ± 0.40 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 13.59 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
+ = C10H15OS-
By formula: C6H5S- + C4H10O = C10H15OS-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.60 ± 0.10 | kcal/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 7.20 ± 0.50 | kcal/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B |
+ 2 = C8H20IO2-
By formula: I- + 2C4H10O = C8H20IO2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.30 ± 0.40 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 4.32 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
+ 2 = C8H20BrO2-
By formula: Br- + 2C4H10O = C8H20BrO2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.90 ± 0.40 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 5.65 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
+ 3 = C12H30BrO3-
By formula: Br- + 3C4H10O = C12H30BrO3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.60 ± 0.50 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 4.33 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
+ = C4H10BrO-
By formula: Br- + C4H10O = C4H10BrO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.80 ± 0.20 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.58 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
+ 3 = C12H30FO3-
By formula: F- + 3C4H10O = C12H30FO3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.3 ± 1.0 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 7.81 | kcal/mol | TDAs | Bogdanov, Peschke, et al., 1999 | gas phase; B |
By formula: C6H5NO2- + C4H10O = (C6H5NO2- • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.4 | kcal/mol | PHPMS | Sieck, 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.2 | cal/mol*K | PHPMS | Sieck, 1985 | gas phase; M |
+ = C4H9D10FO-
By formula: F- + C4H10O = C4H9D10FO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 25.1 ± 2.0 | kcal/mol | IMRE | Wilkinson, Szulejko, et al., 1992 | gas phase; Reported relative to ROH..F-, 0.5 kcal/mol weaker.; B |
By formula: C4H8 + H2O = C4H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -12.775 | kcal/mol | Eqk | Eberz and Lucas, 1934 | gas phase; solvent: Aqueous; Heat of hydration; ALS |
By formula: C2H2O + C4H10O = C6H12O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -23.49 | kcal/mol | Cm | Rice and Greenberg, 1934 | liquid phase; ALS |
By formula: C4H10O = C4H8 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.6 | kcal/mol | Eqk | Taft and Riesz, 1955 | liquid phase; ALS |
By formula: Li+ + C4H10O = (Li+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 42.5 ± 2.4 | kcal/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes
Data compiled by: Coblentz Society, Inc.
- GAS (30 mmHg, N2 ADDED, TOTAL PRESSURE 600 mmHg); DOW KBr FOREPRISM-GRATING; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 2 cm-1 resolution
- LIQUID (NEAT); PERKIN-ELMER 521 (GRATING); (ADJUSTED addcm-115-5-2); 2 cm-1 resolution
- SOLUTION (10.5% IN CCl4 FOR 3800-1300, 5.2% IN CS2 FOR 1300-650, AND 10.5% IN CCl4 FOR 650-250 CM-1) VERSUS SOLVENT; Not specified, most likely a grating or hybrid spectrometer.; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center, 1998. |
NIST MS number | 291339 |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Wiberg and Hao, 1991
Wiberg, K.B.; Hao, S.,
Enthalpies of hydration of alkenes. 4. Formation of acyclic tert-alcohols,
J. Org. Chem., 1991, 56, 5108-5110. [all data]
Skinner and Snelson, 1960
Skinner, H.A.; Snelson, A.,
The heats of combustion of the four isomeric butyl alcohols,
Trans. Faraday Soc., 1960, 56, 1776-1783. [all data]
Taft and Riesz, 1955
Taft, R.W., Jr.; Riesz, P.,
Thermodynamic properties for the system isobutene-t-butyl alcohol,
J. Am. Chem. Soc., 1955, 77, 902-904. [all data]
Thermodynamics Research Center, 1997
Thermodynamics Research Center,
Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]
Beynon E.T., 1963
Beynon E.T., Jr.,
The thermodynamic properties of 2-methyl-2-propanol,
J. Phys. Chem., 1963, 67, 2761-2765. [all data]
Chao J., 1986
Chao J.,
Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties,
J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]
Stromsoe E., 1970
Stromsoe E.,
Heat capacity of alcohol vapors at atmospheric pressure,
J. Chem. Eng. Data, 1970, 15, 286-290. [all data]
Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M.,
Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds,
J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]
Parks and Anderson, 1926
Parks, G.S.; Anderson, C.T.,
Thermal data on organic compounds. III. The heat capacities, entropies and free energies of tertiary butyl alcohol, mannitol, erythritol and normal butyric acid,
J. Am. Chem. Soc., 1926, 48, 1506-1512. [all data]
Raley, Rust, et al., 1948
Raley, J.H.; Rust, F.F.; Vaughan, W.E.,
Decompositions of Di-t-alkyl peroxides. I. Kinetics,
J. Am. Chem. Soc., 1948, 70, 88-94. [all data]
Oetting F.L., 1963
Oetting F.L.,
The heat capacity and entropy of 2-methyl-2-propanol from 15 to 330 K,
J. Phys. Chem., 1963, 67, 2757-2761. [all data]
Caceres-Alonso, Costas, et al., 1988
Caceres-Alonso, M.; Costas, M.; Andreoli-Ball, L.; Patterson, D.,
Steric effects on the self-association of branched and cyclic alcohols in inert solvents. Apparent heat capacities of secondary and tertiary alcohols in hydrocarbons,
Can. J. Chem., 1988, 66, 989-998. [all data]
Okano, Ogawa, et al., 1988
Okano, T.; Ogawa, H.; Murakami, S.,
Molar excess volumes, isentropic compressions, and isobaric heat capacities of methanol-isomeric butanol systems at 298.15 K,
Can. J. Chem., 1988, 66, 713-717. [all data]
De Visser, Perron, et al., 1977
De Visser, C.; Perron, G.; Desnoyers, J.E.,
Volumes and heat capacities of ternary aqueous systems at 25°C. Mixtures of urea, tert-butyl alcohol, N,N-dimethylformamide, and water,
J. Amer. Chem. Soc., 1977, 99, 5894-5900. [all data]
De Visser, Perron, et al., 1977, 2
De Visser, C.; Perron, G.; Desnoyers, J.E.,
The heat capacities, volumes and expansibilities of tert-butyl alcohol - water mixtures form 6 to 65°C,
Can. J. Chem., 1977, 55, 856-762. [all data]
Murthy and Subrahmanyam, 1977
Murthy, N.M.; Subrahmanyam, S.V.,
Behaviour of excess heat capacity of aqueous non-electrolytes,
Indian J. Pure Appl. Phys., 1977, 15, 485-489. [all data]
Skold, Suurkuusk, et al., 1976
Skold, R.; Suurkuusk, J.; Wadso, I.,
Thermochemistry of solutions of biochemical model compounds. 7. Aqueous solutions of some amides, t-butanol, and pentanol,
J. Chem. Thermodynam., 1976, 8, 1075-1080. [all data]
Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R.,
Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases,
J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]
Oetting, 1963
Oetting, F.L.,
The heat capacity and entropy of 2-methyl-2-propanol from 15 to 330!31k,
J. Phys. Chem., 1963, 67, 2757-61. [all data]
Parks and Anderson, 1926, 2
Parks, G.S.; Anderson, C.T.,
Thermal data on organic compounds. III. The heat capacities, entropies and free energies of tertiary butyl alcohol, mannitol, erythritol and normal butyric acid,
J. Am. Chem. Soc., 1926, 48, 1506-12. [all data]
Gude and Teja, 1995
Gude, M.; Teja, A.S.,
Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols,
J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Ambrose and Townsend, 1963
Ambrose, D.; Townsend, R.,
Thermodynamic Properties of Organic Oxygen Compounds IX. The Critical Properties and Vapor Pressures Above Five Atmospheres of Six Aliphatic Alcohols,
J. Chem. Soc., 1963, 54, 3614-25. [all data]
Krone and Johnson, 1956
Krone, L.H.; Johnson, R.C.,
Thermodynamic Properties of tert-Butyl ALcohol,
AIChE J., 1956, 2, 552-4. [all data]
Pawlewski, 1883
Pawlewski, B.,
Critical temperatures of some liquids,
Ber. Dtsch. Chem. Ges., 1883, 16, 2633-36. [all data]
Ortega, Espiau, et al., 2003
Ortega, Juan; Espiau, Fernando; Postigo, Miguel,
Isobaric Vapor-Liquid Equilibria and Excess Quantities for Binary Mixtures of an Ethyl Ester + tert -Butanol and a New Approach to VLE Data Processing,
J. Chem. Eng. Data, 2003, 48, 4, 916-924, https://doi.org/10.1021/je0202073
. [all data]
Aucejo, Loras, et al., 1999
Aucejo, Antonio; Loras, Sonia; Muñoz, Rosa; Ordoñez, Luis Miguel,
Isobaric vapor--liquid equilibrium for binary mixtures of 2-methylpentane+ethanol and +2-methyl-2-propanol,
Fluid Phase Equilibria, 1999, 156, 1-2, 173-183, https://doi.org/10.1016/S0378-3812(99)00029-1
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Ambrose, Counsell, et al., 1970
Ambrose, D.; Counsell, J.F.; Davenport, A.J.,
The use of Chebyshev polynomials for the representation of vapour pressures between the triple point and the critical point,
The Journal of Chemical Thermodynamics, 1970, 2, 2, 283-294, https://doi.org/10.1016/0021-9614(70)90093-5
. [all data]
Beynon and McKetta, 1963
Beynon, Eugene T.; McKetta, John J.,
THE THERMODYNAMIC PROPERTIES OF 2-METHYL-2-PROPANOL,
J. Phys. Chem., 1963, 67, 12, 2761-2765, https://doi.org/10.1021/j100806a060
. [all data]
Majer, Svoboda, et al., 1984
Majer, V.; Svoboda, V.; Hynek, V.,
On the enthalpy of vaporization of isomeric butanols,
J. Chem. Thermodyn., 1984, 16, 1059-1066. [all data]
Sachek, Peshchenko, et al., 1982
Sachek, A.I.; Peshchenko, A.D.; Markovnik, V.S.; Ral'ko, O.V.; Andreevskii, D.N.; Leont'eva, A.A.,
Termodin. Org. Soedin., 1982, 94. [all data]
Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J.,
Physical and thermodynamic properties of aliphatic alcohols,
J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]
Brown, Fock, et al., 1969
Brown, I.; Fock, W.; Smith, F.,
The thermodynamic properties of solutions of normal and branched alcohols in benzene and n-hexane,
The Journal of Chemical Thermodynamics, 1969, 1, 3, 273-291, https://doi.org/10.1016/0021-9614(69)90047-0
. [all data]
Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E.,
The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
Ambrose and Townsend, 1963, 2
Ambrose, D.; Townsend, R.,
681. Thermodynamic properties of organic oxygen compounds. Part IX. The critical properties and vapour pressures, above five atmospheres, of six aliphatic alcohols,
J. Chem. Soc., 1963, 3614, https://doi.org/10.1039/jr9630003614
. [all data]
Parks and Barton, 1928
Parks, George S.; Barton, Bernard,
VAPOR PRESSURE DATA FOR ISOPROPYL ALCOHOL AND TERTIARY BUTYL ALCOHOL,
J. Am. Chem. Soc., 1928, 50, 1, 24-26, https://doi.org/10.1021/ja01388a004
. [all data]
Ambrose and Townsend, 1963, 3
Ambrose, D.; Townsend, R.,
Thermodynamic Properties of Organic Oxygen Compounds. Part 9. The Critical Properties and Vapour Pressures, above Five Atmospheres, of Six Aliphatic Alcohols,
J. Chem. Soc., 1963, 3614-3625, https://doi.org/10.1039/jr9630003614
. [all data]
Biddiscombe, Collerson, et al., 1963
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S.,
Thermodynamic Properties of Organic Oxygen Compounds. Part 8. Purification and Vapor Pressures of the Propyl and Butyl Alcohols,
J. Chem. Soc., 1963, 1954-1957, https://doi.org/10.1039/jr9630001954
. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Hiraoka and Mizuse, 1987
Hiraoka, K.; Mizuse, S.,
Gas-Phase Solvation of Cl- with H2O, CH3OH, C2H4OH, i-C3H7OH, n-C3H7OH, and t-C4H9OH,
Chem. Phys., 1987, 118, 3, 457, https://doi.org/10.1016/0301-0104(87)85078-4
. [all data]
Sieck, 1985
Sieck, L.W.,
Thermochemistry of Solvation of NO2- and C6H5NO2- by Polar Molecules in the Vapor Phase. Comparison with Cl- and Variation with Ligand Structure.,
J. Phys. Chem., 1985, 89, 25, 5552, https://doi.org/10.1021/j100271a049
. [all data]
Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B.,
Gas phase negative ion chemistry of alkylchloroformates,
Can. J. Chem., 1984, 62, 675. [all data]
French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P.,
Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-,
Can. J. Chem., 1982, 60, 1907. [all data]
Kebarle, 1977
Kebarle, P.,
Ion Thermochemistry and Solvation from Gas Phase Ion Equilibria,
Ann. Rev. Phys. Chem., 1977, 28, 1, 445, https://doi.org/10.1146/annurev.pc.28.100177.002305
. [all data]
Yamdagni and Kebarle, 1971
Yamdagni, R.; Kebarle, P.,
Hydrogen bonding energies to negative ions from gas phase measurements of ionic equilibria,
J. Am. Chem. Soc., 1971, 93, 7139. [all data]
Bogdanov, Peschke, et al., 1999
Bogdanov, B.; Peschke, M.; Tonner, D.S.; Szulejko, J.E.; McMahon, T.B.,
Stepwise solvation of halides by alcohol molecules in the gas phase,
Int. J. Mass Spectrom., 1999, 187, 707-725, https://doi.org/10.1016/S1387-3806(98)14180-5
. [all data]
Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria,
J. Am. Chem. Soc., 1984, 106, 517. [all data]
Ramond, Davico, et al., 2000
Ramond, T.M.; Davico, G.E.; Schwartz, R.L.; Lineberger, W.C.,
Vibronic structure of alkoxy radicals via photoelectron spectroscopy,
J. Chem. Phys., 2000, 112, 3, 1158-1169, https://doi.org/10.1063/1.480767
. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
DeTuri and Ervin, 1999
DeTuri, V.F.; Ervin, K.M.,
Competitive threshold collision-induced dissociation: Gas-phase acidities and bond dissociation energies for a series of alcohols,
J. Phys. Chem. A, 1999, 103, 35, 6911-6920, https://doi.org/10.1021/jp991459m
. [all data]
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Caldwell, Rozeboom, et al., 1984
Caldwell, G.; Rozeboom, M.D.; Kiplinger, J.P.; Bartmess, J.E.,
Anion-alcohol hydrogen bond strengths in the gas phase,
J. Am. Chem. Soc., 1984, 106, 4660. [all data]
Paul and Kebarle, 1990
Paul, G.J.C.; Kebarle, P.,
Thermodynamics of the Association Reactions OH- - H2O = HOHOH- and CH3O- - CH3OH = CH3OHOCH3- in the Gas Phase,
J. Phys. Chem., 1990, 94, 12, 5184, https://doi.org/10.1021/j100375a076
. [all data]
Meot-ner and Sieck, 1986
Meot-ner, M.; Sieck, L.W.,
Relative acidities of water and methanol, and the stabilities of the dimer adducts,
J. Phys. Chem., 1986, 90, 6687. [all data]
Meot-Ner(Mautner), 1986
Meot-Ner(Mautner), M.,
Comparative Stabilities of Cationic and Anionic Hydrogen-Bonded Networks. Mixed Clusters of Water-Methanol,
J. Am. Chem. Soc., 1986, 108, 20, 6189, https://doi.org/10.1021/ja00280a014
. [all data]
Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B.,
Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements,
J. Am. Chem. Soc., 1983, 105, 2944. [all data]
Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P.,
Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions,
J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014
. [all data]
Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E.,
A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase,
Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]
Meot-Ner, 1984
Meot-Ner, (Mautner)M.,
The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects,
J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015
. [all data]
Caldwell and Kebarle, 1984
Caldwell, G.; Kebarle, P.,
Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas phase equilibria measurements,
J. Am. Chem. Soc., 1984, 106, 967. [all data]
Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids,
J. Am. Chem. Soc., 1987, 109, 6230. [all data]
Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P.,
Hydration of CN-, NO2-, NO3-, and HO- in the gas phase,
Can. J. Chem., 1971, 49, 3308. [all data]
Sieck and Meot-ner, 1989
Sieck, L.W.; Meot-ner, M.,
Ionic Hydrogen Bond and Ion Solvation. 8. RS-..HOR Bond Strengths. Correlation with Acidities.,
J. Phys. Chem., 1989, 93, 4, 1586, https://doi.org/10.1021/j100341a079
. [all data]
Meot-ner, 1988
Meot-ner, M.,
The Ionic Hydrogen Bond and Solvation. 7. Interaction Energies of Carbanions with Solvent Molecules,
J. Am. Chem. Soc., 1988, 110, 12, 3858, https://doi.org/10.1021/ja00220a022
. [all data]
Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B.,
Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation,
Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X
. [all data]
Rodgers and Armentrout, 1999
Rodgers, M.T.; Armentrout, P.B.,
Absolute Binding Energies of Sodium Ions to Short-Chain Alcohols, CnH2n+2O, n=1-4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, 1999, 4955. [all data]
McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G.,
An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions,
Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7
. [all data]
Wilkinson, Szulejko, et al., 1992
Wilkinson, F.E.; Szulejko, J.E.; Allison, C.E.; Mcmahon, T.B.,
Fourier Transform Ion Cyclotron Resonance Investigation of the Deuterium Isotope Effect on Gas Phase Ion/Molecule Hydrogen Bonding Interactions in Alcohol-Fluoride Adduct Ions,
Int. J. Mass Spectrom., 1992, 117, 487-505, https://doi.org/10.1016/0168-1176(92)80110-M
. [all data]
Eberz and Lucas, 1934
Eberz, W.F.; Lucas, H.J.,
The hydration of unsaturated compounds. II. The equilibrium between i-butene and t-butanol and the free energy of hydration of i-butene,
J. Am. Chem. Soc., 1934, 56, 1230-1234. [all data]
Rice and Greenberg, 1934
Rice, F.O.; Greenberg, J.,
Ketene. III. Heat of formation and heat of reaction with alcohols,
J. Am. Chem. Soc., 1934, 38, 2268-2270. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid Cp,solid Constant pressure heat capacity of solid Pc Critical pressure S°liquid Entropy of liquid at standard conditions S°solid,1 bar Entropy of solid at standard conditions (1 bar) T Temperature Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.