α-D-Glucose

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δcsolid-2805.0 ± 1.3kJ/molCcbPonomarev and Migarskaya, 1960Reanalyzed by Cox and Pilcher, 1970, Original value = -2806.2 ± 1.3 kJ/mol; Corresponding Δfsolid = -1271.1 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
solid,1 bar209.19J/mol*KN/ABoerio-Goates, 1991DH

Constant pressure heat capacity of solid

Cp,solid (J/mol*K) Temperature (K) Reference Comment
219.19298.15Boerio-Goates, 1991T = 7 to 347 K.; DH
221.300.Finegold, Franks, et al., 1989T(glass) = 312 K.; DH
219.79298.15Lian, Chen, et al., 1982DH
224.303.Kawaizumi, Kushida, et al., 1981T = 300 to 315 K.; DH
218.8298.15Douglas, Ball, et al., 1951T = 273 to 368 K.; DH
218.0298.Nelson and Newton, 1941T = 0 to 60°C. Equation only.; DH
220.9298.Parks and Thomas, 1934T = 273 to 318 K. Curve given also for undercooled liquid.; DH
211.3298.1Parks, Kelley, et al., 1929Extrapolation below 90 K, 55.23 J/mol*K.; DH
229.3300.Simon, 1922T = 20 to 287 K.; DH

Phase change data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
31.420414.Parks and Thomas, 1934DH
31.42414.Domalski and Hearing, 1996AC
34.3423.2Schwarz, 1996AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
75.9414.Parks and Thomas, 1934DH

Reaction thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C6H11O6- + Hydrogen cation = α-D-Glucose

By formula: C6H11O6- + H+ = C6H12O6

Quantity Value Units Method Reference Comment
Δr1389. ± 17.kJ/molIMRBCai and Cole, 2002gas phase

Mass spectrum (electron ionization)

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin W.E. FRANKLIN, SOUTH. REG. RES. CENT., NEW ORLEANS, LA., USA
NIST MS number 98151

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Ponomarev and Migarskaya, 1960
Ponomarev, V.V.; Migarskaya, L.B., Heats of combustion of some amino-acids, Russ. J. Phys. Chem. (Engl. Transl.), 1960, 34, 1182-1183. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Boerio-Goates, 1991
Boerio-Goates, J., Heat-capacity measurements and thermodynamic functions of crystalline a-D-glucose at temperatures from 10K to 340K, J. Chem. Thermodynam., 1991, 23, 403-409. [all data]

Finegold, Franks, et al., 1989
Finegold, L.; Franks, F.; Hatley, R.H.M., Glass/rubber transitions and heat capacities of binary sugar blends, J. Chem. Soc., Faraday Trans., 1989, 1 85(9), 2945-2951. [all data]

Lian, Chen, et al., 1982
Lian, Y.N.; Chen, A.T.; Suurkuusk, J.; Wadsoe, I., Polyol-water interactions as reflected by aqueous heat capacity values, Acta Chem. Scand., 1982, A36(9), 735-739. [all data]

Kawaizumi, Kushida, et al., 1981
Kawaizumi, F.; Kushida, S.; Miyahara, Y., Determination of the specific heat capacities of aqueous solutions of pentose, Bull. Chem. Soc. Japan, 1981, 54(8), 2282-2285. [all data]

Douglas, Ball, et al., 1951
Douglas, T.B.; Ball, A.F.; Torgeson, J.L., Heat capacity of crystalline dextrose between 25 and 95°C, J. Am. Chem. Soc., 1951, 73, 1360-1361. [all data]

Nelson and Newton, 1941
Nelson, E.W.; Newton, R.F., The heat capacity of glucose glass, J. Am. Chem. Soc., 1941, 63, 2178-2182. [all data]

Parks and Thomas, 1934
Parks, G.S.; Thomas, S.B., The heat capacities of crystalline, glassy and undercooled liquid glucose, J. Am. Chem. Soc., 1934, 56, 1423. [all data]

Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M., Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]

Simon, 1922
Simon, F., Untersuchungen über die spezifische Wärme bei tiefen Temperaturen, Ann. Physik. [4], 1922, 68, 241-280. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Schwarz, 1996
Schwarz, Frederick P., Enthalpy of solution of carbohydrates using a modified differential scanning calorimeter, J Solution Chem, 1996, 25, 5, 471-484, https://doi.org/10.1007/BF00972993 . [all data]

Cai and Cole, 2002
Cai, Y.; Cole, R.B., Stabilization of anionic adducts in negative ion electrospray mass spectrometry, Anal. Chem., 2002, 74, 5, 985-991, https://doi.org/10.1021/ac0108818 . [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References