Xenon
- Formula: Xe
- Molecular weight: 131.293
- IUPAC Standard InChIKey: FHNFHKCVQCLJFQ-UHFFFAOYSA-N
- CAS Registry Number: 7440-63-3
- Chemical structure:
This structure is also available as a 2d Mol file - Other names: Xe; UN 2036; UN 2591; Xenon atom; Xeneisol 133A; Xenomatic
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- NIST Atomic Spectra Database - Lines Holdings (on physics web site)
- NIST Atomic Spectra Database - Levels Holdings (on physics web site)
- NIST Atomic Spectra Database - Ground states and ionization energies (on physics web site)
- Gas Phase Kinetics Database
- X-ray Photoelectron Spectroscopy Database, version 5.0
- X-ray Photoelectron Spectroscopy Database, version 5.0
- X-ray Photoelectron Spectroscopy Database, version 5.0
- X-ray Photoelectron Spectroscopy Database, version 5.0
- X-ray Photoelectron Spectroscopy Database, version 5.0
- X-ray Photoelectron Spectroscopy Database, version 5.0
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
S°gas,1 bar | 40.5557 ± 0.0007 | cal/mol*K | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
S°gas,1 bar | 40.554 | cal/mol*K | Review | Chase, 1998 | Data last reviewed in March, 1982 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (cal/mol*K)
H° = standard enthalpy (kcal/mol)
S° = standard entropy (cal/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 6000. |
---|---|
A | 4.967974 |
B | 1.780431×10-7 |
C | -4.898184×10-8 |
D | 2.549379×10-9 |
E | 5.975765×10-9 |
F | -1.481203 |
G | 46.56740 |
H | 0.000000 |
Reference | Chase, 1998 |
Comment | Data last reviewed in March, 1982 |
Phase change data
Go To: Top, Gas phase thermochemistry data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 165.02 | K | N/A | Ziegler, Mullins, et al., 1966 | Uncertainty assigned by TRC = 0.05 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 161.38 | K | N/A | Kemp, Kemp, et al., 1985 | Uncertainty assigned by TRC = 0.02 K; studied as possible fixed point for IPTS-68; TRC |
Ttriple | 161.37 | K | N/A | Ziegler, Mullins, et al., 1966 | Uncertainty assigned by TRC = 0.05 K; TRC |
Ttriple | 161.4 | K | N/A | Lahr and Eversole, 1962 | Uncertainty assigned by TRC = 0.3 K; TRC |
Ttriple | 161.36 | K | N/A | Clusius and Weigand, 1940 | Uncertainty assigned by TRC = 0.2 K; See property X for dP/dT for c-l equil.; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ptriple | 0.80533 | atm | N/A | Fonseca and Lobo, 1989 | Uncertainty assigned by TRC = 0.0001 atm; TRC |
Ptriple | 0.6085 | atm | N/A | Calado, Rebelo, et al., 1986 | Uncertainty assigned by TRC = 0.00007 atm; TRC |
Ptriple | 0.8058 | atm | N/A | Ziegler, Mullins, et al., 1966 | Uncertainty assigned by TRC = 0.0019 atm; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 289.74 | K | N/A | Theeuwes and Bearman, 1970 | Uncertainty assigned by TRC = 0.02 K; PVT, values chosen concordant with vapour pressures measured up to 284 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 8.371 | mol/l | N/A | Theeuwes and Bearman, 1970 | Uncertainty assigned by TRC = 0.00830 mol/l; PVT, values chosen concordant with vapour pressures measured up to 284 K; TRC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
161.43 to 162.63 | 2.83310 | 326.595 | -49.796 | Chen, Lim, et al., 1975 | Coefficents calculated by NIST from author's data. |
161.70 to 184.70 | 3.80104 | 577.661 | -13.0 | Michels and Wassenaar, 1950 | Coefficents calculated by NIST from author's data. |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | ATLANTIC REFINING CO., PHILADELPHIA, PENNSYLVANIA |
NIST MS number | 34169 |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A.,
CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Ziegler, Mullins, et al., 1966
Ziegler, W.T.; Mullins, J.C.; Berquist, A.R.,
Calculation of the Vapor Pressure and Heats of Vaporization and Sublimation of Liquids and Solids below One Atmosphere Pressure. VIII. Xenon, Ga. Inst. Technol., Eng. Exp. Stn., Proj. A-764, Tech. Rep. No. 3, 1966. [all data]
Kemp, Kemp, et al., 1985
Kemp, R.C.; Kemp, W.R.G.; Smart, P.W.,
The triple point of xenon as a possible defining point on an international temperature scale,
Metrologia, 1985, 21, 43. [all data]
Lahr and Eversole, 1962
Lahr, P.H.; Eversole, W.G.,
Compression Isotherms of Argon, Krypton, and Xenon Through the Freezing Zone,
J. Chem. Eng. Data, 1962, 7, 42-47. [all data]
Clusius and Weigand, 1940
Clusius, K.; Weigand, K.,
Melting Curves of the Gases A, Kr, Xe, CH4, CH3D, CD4, C2H4, C2H6, COS, and PH3 to 200 Atmospheres Pressure. The Chane of Volume on Melting,
Z. Phys. Chem., Abt. B, 1940, 46, 1-37. [all data]
Fonseca and Lobo, 1989
Fonseca, I.M.A.; Lobo, L.Q.,
Thermodynamics of liquid mixtures of xenon and methyl fluoride,
Fluid Phase Equilib., 1989, 47, 249. [all data]
Calado, Rebelo, et al., 1986
Calado, J.C.G.; Rebelo, L.P.N.; Streett, W.B.; Zollweg, J.A.,
Thermodynamics of liquid (dimethylether + xenon),
J. Chem. Thermodyn., 1986, 18, 931. [all data]
Theeuwes and Bearman, 1970
Theeuwes, F.; Bearman, R.J.,
The p,V,T behavior of dense fluids V. The vapor pressure and saturated liquid density of xenon,
J. Chem. Thermodyn., 1970, 2, 507-12. [all data]
Chen, Lim, et al., 1975
Chen, H.H.; Lim, C.C.; Aziz, R.A.,
The Enthalpy of Vaporization and Internal Energy of Liquid Argon, Krypton, and Xenon Determined from Vapor Pressures,
J. Chem. Thermodyn., 1975, 7, 2, 191-199, https://doi.org/10.1016/0021-9614(75)90268-2
. [all data]
Michels and Wassenaar, 1950
Michels, A.; Wassenaar, T.,
Vapour Pressure of Liquid Xenon,
Physica (Amsterdam), 1950, 16, 3, 253-256, https://doi.org/10.1016/0031-8914(50)90023-1
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References
- Symbols used in this document:
Ptriple Triple point pressure S°gas,1 bar Entropy of gas at standard conditions (1 bar) Tboil Boiling point Tc Critical temperature Ttriple Triple point temperature ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.