Pyrene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfsolid29.92 ± 0.55kcal/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Δfsolid29.99 ± 0.30kcal/molCcrSmith, Stewart, et al., 1980ALS
Δfsolid27.41 ± 0.09kcal/molCcrWestrum and Wong, 1967ALS
Δfsolid27.42 ± 0.85kcal/molCcbRichardson and Parks, 1939Reanalyzed by Cox and Pilcher, 1970, Original value = 26.90 kcal/mol; see Richardson, 1939; ALS
Quantity Value Units Method Reference Comment
Δcsolid-1876.4 ± 0.24kcal/molCcrSmith, Stewart, et al., 1980Corresponding Δfsolid = 29.97 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcsolid-1873.83 ± 0.09kcal/molCcrWestrum and Wong, 1967Corresponding Δfsolid = 27.44 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcsolid-1873.81 ± 0.84kcal/molCcbRichardson and Parks, 1939Reanalyzed by Cox and Pilcher, 1970, Original value = -1872.97 kcal/mol; see Richardson, 1939; Corresponding Δfsolid = 27.42 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
solid,1 bar53.750cal/mol*KN/AWong and Westrum, 1971DH
solid,1 bar51.41cal/mol*KN/AJacobs and Parks, 1934Extrapolation below 90 K, 59.79 J/mol*K. Hump in Cp curve around 116 K, probably 2nd order transition. H = 100 J/mol.; DH

Constant pressure heat capacity of solid

Cp,solid (cal/mol*K) Temperature (K) Reference Comment
54.818298.15Smith, Stewart, et al., 1980DH
54.900298.15Wong and Westrum, 1971T = 5 to 484 K.; DH
54.410291.1Jacobs and Parks, 1934T = 94 to 292 K. Value is unsmoothed experimental datum.; DH

Reaction thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C16H10+ + Pyrene = (C16H10+ • Pyrene)

By formula: C16H10+ + C16H10 = (C16H10+ • C16H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr19.1kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
8.2390.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated

C16H11+ + Pyrene = (C16H11+ • Pyrene)

By formula: C16H11+ + C16H10 = (C16H11+ • C16H10)

Quantity Value Units Method Reference Comment
Δr16.5kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase
Quantity Value Units Method Reference Comment
Δr29.cal/mol*KPHPMSMeot-Ner (Mautner), 1980gas phase

Ion clustering data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

C16H10+ + Pyrene = (C16H10+ • Pyrene)

By formula: C16H10+ + C16H10 = (C16H10+ • C16H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr19.1kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
8.2390.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated

C16H11+ + Pyrene = (C16H11+ • Pyrene)

By formula: C16H11+ + C16H10 = (C16H11+ • C16H10)

Quantity Value Units Method Reference Comment
Δr16.5kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase
Quantity Value Units Method Reference Comment
Δr29.cal/mol*KPHPMSMeot-Ner (Mautner), 1980gas phase

Mass spectrum (electron ionization)

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW- 129
NIST MS number 227992

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y., Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons, J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]

Smith, Stewart, et al., 1980
Smith, N.K.; Stewart, R.C., Jr.; Osborn, A.G.; Scott, D.W., Pyrene: vapor pressure, enthalpy of combustion, and chemical thermodynamic properties, J. Chem. Thermodyn., 1980, 12, 919-926. [all data]

Westrum and Wong, 1967
Westrum, E.F., Jr.; Wong, S., Strain energies and thermal properties of globular and polynuclear aromatic molecules, AEC Rept. Coo-1149-92, Contract AT(11-1)-1149, 1967, 1-7. [all data]

Richardson and Parks, 1939
Richardson, J.W.; Parks, G.S., Thermal data on organic compounds. XIX. Modern combustion data for some non-volatile compounds containing carbon, hydrogen and oxygen, J. Am. Chem. Soc., 1939, 61, 3543-3546. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Richardson, 1939
Richardson, J.W., Precise determination of the heats of combustion of some representative organic compounds, Ph.D. Thesis for Standford University, 1939, 1-122. [all data]

Wong and Westrum, 1971
Wong, W-K.; Westrum, E.F., Jr., Thermodynamics of polynuclear aromatic molecules. I. Heat capacities and enthalpies of fusion of pyrene, flouranthene, and triphenylene, J. Chem. Thermodynam., 1971, 3, 105-124. [all data]

Jacobs and Parks, 1934
Jacobs, C.J.; Parks, G.S., Thermal data on organic compounds. XIV. Some heat capacity, entropy and free energy data for cyclic substances, J. Am. Chem. Soc., 1934, 56, 1513-1517. [all data]

Meot-Ner (Mautner), 1980
Meot-Ner (Mautner), M., Dimer Cations of Polycyclic Aromatics: Experimental Bonding Energies and Resonance Stabilization, J. Phys. Chem., 1980, 84, 21, 2724, https://doi.org/10.1021/j100458a012 . [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, Mass spectrum (electron ionization), References