Tetrachloroethylene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-15.3 ± 1.kcal/molReviewManion, 2002derived from recommended ΔfHgas° and ΔvapH°; DRB
Δfliquid-13.0kcal/molCmKirkbride, 1956ALS
Quantity Value Units Method Reference Comment
Δcliquid-199. ± 3.kcal/molCcbSmith, Bjellerup, et al., 1953ALS
Quantity Value Units Method Reference Comment
liquid57.50cal/mol*KN/ANovoselova, Rabinovich, et al., 1986DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
35.172298.15Wilhelm, Lainez, et al., 1989DH
37.74298.15Novoselova, Rabinovich, et al., 1986T = 6 to 300 K.; DH
35.01298.15Grolier, Inglese, et al., 1982T = 298.15 K. One data point given.; DH
33.39298.Kurbatov, 1948T = 16 to 119°C, mean Cp two temperatures.; DH
35.11298.von Reis, 1881T = 291 to 410 K.; DH

Reaction thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Ethane, pentachloro- = Tetrachloroethylene + Hydrogen chloride

By formula: C2HCl5 = C2Cl4 + HCl

Quantity Value Units Method Reference Comment
Δr10.8 ± 1.1kcal/molEqkLevanova, Bushneva, et al., 1979liquid phase; GC
Δr9.3kcal/molEqkLevanova, Bushneva, et al., 1979gas phase

Tetrachloroethylene + Chlorine = Ethane, hexachloro-

By formula: C2Cl4 + Cl2 = C2Cl6

Quantity Value Units Method Reference Comment
Δr-36.70 ± 0.60kcal/molCmKirkbride, 1956liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -37. kcal/mol

H2CaO2 + 2Ethane, pentachloro- = CaCl2 + 2Tetrachloroethylene + 2Water

By formula: H2CaO2 + 2C2HCl5 = CaCl2 + 2C2Cl4 + 2H2O

Quantity Value Units Method Reference Comment
Δr-43.40kcal/molCmKirkbride, 1956liquid phase

Ethane, hexachloro- = Tetrachloroethylene + Chlorine

By formula: C2Cl6 = C2Cl4 + Cl2

Quantity Value Units Method Reference Comment
Δr31.7 ± 1.0kcal/molEqkPuyo, Balesdent, et al., 1963gas phase

Mass spectrum (electron ionization)

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center
NIST MS number 341689

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Manion, 2002
Manion, J.A., Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons, J. Phys. Chem. Ref. Data, 2002, 31, 1, 123-172, https://doi.org/10.1063/1.1420703 . [all data]

Kirkbride, 1956
Kirkbride, F.W., The heats of chlorination of some hydrocarbons and their chloro-derivatives, J. Appl. Chem., 1956, 6, 11-21. [all data]

Smith, Bjellerup, et al., 1953
Smith, L.; Bjellerup, L.; Krook, S.; Westermark, H., Heats of combustion of organic chloro compounds determined by the "quartz wool" method, Acta Chem. Scand., 1953, 7, 65. [all data]

Novoselova, Rabinovich, et al., 1986
Novoselova, N.V.; Rabinovich, I.B.; Tsvetkova, L.Ya.; Moseeva, E.M.; Babinkov, A.G., Heat capacity and thermodynamic functions of tetrachloroethylene, Zhur. Fiz. Khim., 1986, 60, 1627-1630. [all data]

Wilhelm, Lainez, et al., 1989
Wilhelm, E.; Lainez, A.; Grolier, J.-P.E., Thermodynamics of (a halogenated ethane or ethene + an n-alkane). VE and CpE of mixtures containing either 1,1,2,2-tetrachloroethane or tetrachloroethene, Fluid Phase Equilib., 1989, 49, 233-250. [all data]

Grolier, Inglese, et al., 1982
Grolier, J.-P.E.; Inglese, A.; Wilhelm, E., Excess volumes and excess heat capacities of tetrachloroethene + cyclohexane, + methylcyclohexane, + benzene, and + toluene at 298.15 K, J. Chem. Thermodynam., 1982, 14, 523-529. [all data]

Kurbatov, 1948
Kurbatov, V.Ya., Heat capacity of liquids. 2. Heat capacity and the temperature dependence of heat capacity from halogen derivatives of acylic hydrocarbons, Zh. Obshch. Kim., 1948, 18, 372-389. [all data]

von Reis, 1881
von Reis, M.A., Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht, Ann. Physik [3], 1881, 13, 447-464. [all data]

Levanova, Bushneva, et al., 1979
Levanova, s.V.; Bushneva, I.I.; Rodova, R.M.; Rozhnov, A.M.; Treger, Yu.A.; Aprelkin, A.S., Thermodynamic stability of chloroethanes in dehydrochlorination reactions, J. Appl. Chem. USSR, 1979, 52, 1439-1442. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Puyo, Balesdent, et al., 1963
Puyo, J.; Balesdent, D.; Niclause, M.; Dzierzynski, M., Etude analytique et thermodynamique de la pyrolyse de l'hexachloroethane en phase gazeuse., Compt. Rend., 1963, 256, 3471-3473. [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), References