Chromium hexacarbonyl


Condensed phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: José A. Martinho Simões

Quantity Value Units Method Reference Comment
Δfsolid-980. ± 80.kJ/molAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Δcsolid-1932. ± 17.kJ/molCC-SBPittam, Pilcher, et al., 1975Please also see Pedley and Rylance, 1977 and Tel'noi and Rabinovich, 1977.
Δcsolid-1949.4 ± 1.8kJ/molCC-SBShuman, Chernova, et al., 1974Please also see Pedley and Rylance, 1977 and Tel'noi and Rabinovich, 1977.
Δcsolid-1853.9 ± 4.2kJ/molCC-SBCotton, Fischer, et al., 1956Please also see Pedley and Rylance, 1977, Cox and Pilcher, 1970, and Tel'noi and Rabinovich, 1977.

Reaction thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Chromium hexacarbonyl (solution) + Heptane (solution) = C12H16CrO5 (solution) + Carbon monoxide (solution)

By formula: C6CrO6 (solution) + C7H16 (solution) = C12H16CrO5 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr113. ± 3.kJ/molAVGN/AAverage of 13 values; Individual data points

Chromium hexacarbonyl (solution) = C5CrO5 (solution) + Carbon monoxide (solution)

By formula: C6CrO6 (solution) = C5CrO5 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr168.2 ± 2.5kJ/molKinSGraham and Angelici, 1967solvent: Decalin; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of Cr(CO)6(solution) with PBu3(solution).
Δr159.4kJ/molKinSWerner and Prinz, 1966solvent: n-Decane+cyclohexane mixture; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reactions of Cr(CO)6(solution) with a phosphine and an amine. The results were quoted from Graham and Angelici, 1967.

Chromium hexacarbonyl (g) = C5CrO5 (g) + Carbon monoxide (g)

By formula: C6CrO6 (g) = C5CrO5 (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr155. ± 21.kJ/molKinGFletcher and Rosenfeld, 1988 
Δr154. ± 13.kJ/molLPHPLewis, Golden, et al., 1984Temperature range: 740-820 K. The reaction enthalpy at 298 K relies on an activation energy of 147.7 kJ/mol and assumes a negligible activation barrier for product recombination.
Δr161.9kJ/molKinGPajaro, Calderazzo, et al., 1960Please also see Graham and Angelici, 1967. The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of Cr(CO)6(g) with CO(g) Pajaro, Calderazzo, et al., 1960. The results were quoted from Graham and Angelici, 1967.

C10H5CrNO5 (solution) + Carbon monoxide (solution) = Chromium hexacarbonyl (solution) + 1,3-Diazine (solution)

By formula: C10H5CrNO5 (solution) + CO (solution) = C6CrO6 (solution) + C4H4N2 (solution)

Quantity Value Units Method Reference Comment
Δr-61.9kJ/molKinSWovkulich and Atwood, 1980solvent: Hexane; The data rely on the enthalpy and entropy of activation for the forward reaction, 106.3 ± 4.6 kJ/mol and 13.0±14.6 J/(mol K) Dennenberg and Darensbourg, 1972, and also on the enthalpy and entropy of activation for the Cr-CO dissociation in Cr(CO)6, 168.2 ± 2.5 kJ/mol and 94.6±6.3 J/(mol K) Graham and Angelici, 1967. The latter data were obtained in decalin

Chromium hexacarbonyl (cr) = 6Carbon monoxide (g) + chromium (cr)

By formula: C6CrO6 (cr) = 6CO (g) + Cr (cr)

Quantity Value Units Method Reference Comment
Δr266. ± 4.kJ/molTD-HFCAl-Takhin, Connor, et al., 1984 
Δr314.9 ± 0.9kJ/molTD-HZCPittam, Pilcher, et al., 1975Please also see Pedley and Rylance, 1977 and Tel'noi and Rabinovich, 1977.
Δr269.4 ± 4.7kJ/molTD-HFCConnor, Skinner, et al., 1972 

Pentane (solution) + Chromium hexacarbonyl (solution) = C10H12CrO5 (solution) + Carbon monoxide (solution)

By formula: C5H12 (solution) + C6CrO6 (solution) = C10H12CrO5 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr117. ± 11.kJ/molPACMorse, Parker, et al., 1989solvent: Pentane; The reaction enthalpy relies on 0.67 for the quantum yield of CO dissociation

C10H5CrNO5 (cr) + Carbon monoxide (g) = Chromium hexacarbonyl (g) + 1,3-Diazine (g)

By formula: C10H5CrNO5 (cr) + CO (g) = C6CrO6 (g) + C4H4N2 (g)

Quantity Value Units Method Reference Comment
Δr75. ± 6.kJ/molDSCDaamen, van der Poel, et al., 1979 

Chromium hexacarbonyl (g) = 3Carbon monoxide (g) + C3CrO3 (g)

By formula: C6CrO6 (g) = 3CO (g) + C3CrO3 (g)

Quantity Value Units Method Reference Comment
Δr393. ± 42.kJ/molMBPSVenkataraman, Hou, et al., 1990 

Mass spectrum (electron ionization)

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin D.HENNEBERG, MAX-PLANCK INSTITUTE, MULHEIM, WEST GERMANY
NIST MS number 61993

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Pittam, Pilcher, et al., 1975
Pittam, D.A.; Pilcher, G.; Barnes, D.S.; Skinner, H.A.; Todd, D., J. Less-Common Met., 1975, 42, 217. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Tel'noi and Rabinovich, 1977
Tel'noi, V.I.; Rabinovich, I.B., Russ. Chem. Rev., 1977, 46, 689. [all data]

Shuman, Chernova, et al., 1974
Shuman, M.S.; Chernova, V.I.; Zakharov, V.V.; Rabinovich, I.B., Trudy Khim. Khim. Tekhnol., Gorky, 1974, 1, 78. [all data]

Cotton, Fischer, et al., 1956
Cotton, F.A.; Fischer, A.K.; Wilkinson. G., J. Am. Chem. Soc., 1956, 78, 5168. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds in Academic Press, New York, 1970. [all data]

Graham and Angelici, 1967
Graham, J.R.; Angelici, R.J., Inorg. Chem., 1967, 6, 2082. [all data]

Werner and Prinz, 1966
Werner, H.; Prinz, R., Chem. Ber., 1966, 99, 3582. [all data]

Fletcher and Rosenfeld, 1988
Fletcher, R.T.; Rosenfeld, R.N., Recombination of Cr(CO)n with CO: Kinetics and Bond Dissociation Energies, J. Am. Chem. Soc., 1988, 110, 7, 2097, https://doi.org/10.1021/ja00215a014 . [all data]

Lewis, Golden, et al., 1984
Lewis, K.E.; Golden, D.M.; Smith, G.P., Organometallic bond dissociation energies: Laser pyrolysis of Fe(CO)5, Cr(CO)6, Mo(CO)6, and W(CO)6, J. Am. Chem. Soc., 1984, 106, 3905. [all data]

Pajaro, Calderazzo, et al., 1960
Pajaro, G.; Calderazzo, F.; Ercoli, R., Gazz. Chim. Ital., 1960, 90, 1486. [all data]

Wovkulich and Atwood, 1980
Wovkulich, M.J.; Atwood, J.D., J. Organometal. Chem., 1980, 184, 77. [all data]

Dennenberg and Darensbourg, 1972
Dennenberg, R.J.; Darensbourg, D.J., Inorg. Chem., 1972, 11, 72. [all data]

Al-Takhin, Connor, et al., 1984
Al-Takhin, G.; Connor, J.A.; Skinner, H.A.; Zaharani-Moettar, M.T., J. Organomet. Chem., 1984, 260, 189. [all data]

Connor, Skinner, et al., 1972
Connor, J.A.; Skinner, H.A.; Virmani, Y., Microcalorimetric studies. Thermal decomposition and iodination of metal carbonyls, J. Chem. Soc., Faraday Trans. 1, 1972, 68, 0, 1754, https://doi.org/10.1039/f19726801754 . [all data]

Morse, Parker, et al., 1989
Morse, J.M., Jr.; Parker, G.H.; Burkey, T.J., Organometallics, 1989, 8, 2471. [all data]

Daamen, van der Poel, et al., 1979
Daamen, H.; van der Poel, H.; Stufkens, D.J.; Oskam, A., Thermochim. Acta, 1979, 34, 69. [all data]

Venkataraman, Hou, et al., 1990
Venkataraman, B.; Hou, H.; Zhang, Z.; Chen, S.; Bandukwalla, G.; Vernon, M., J. Chem. Phys., 1990, 92, 5338. [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), References